The solution for this problem:
Given:
f1 = 0.89 Hz
f2 = 0.63 Hz
Δm = m2 - m1 = 0.603 kg
The frequency of mass-spring oscillation is:
f = (1/2π)√(k/m)
k = m(2πf)²
Then we know that k is constant for both trials, we have:
k = k
m1(2πf1)² = m2(2πf2)²
m1 = m2(f2/f1)²
m1 = (m1+Δm)(f2/f1)²
m1 = Δm/((f1/f2)²-1)
m 1 = 0.603/
(0.89/0.63)^2 – 1
= 0.609 kg or 0.61kg or 610 g
Hello!
===
When objects are heated, their molecules tend to vibrate fast. As they vibrate, the space between each atom increases. This keeps on happening, and the object expands until it has cooled down.
===
Hope this helps! :)
Answer:
1.35 kJ
Explanation:
KE = ½mv² = ½ × 0.030 kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ
Answer:
(a) Time t = 16.46 sec
(b) Time t =13.466 sec
(c) Deceleration = 
Explanation:
(a) As the train starts from rest its initial velocity u = 0 m/sec
Acceleration 
Final speed v = 80 km/hr

From first equation of motion v =u+at
So 
(b) Now initial speed u = 22.22 m/sec
As finally train comes to rest so final speed v=0 m/sec
Deceleration 
So 
(c) We have given that initial velocity = 80 km/hr = 22.22 m/sec
Final velocity v = 0 m/sec
Time t = 8.30 sec
So acceleration is given by

As acceleration is negative so it is a deceleration
Anything less dense than water will float, like oil. Anything more dense than water will sink, like rock.