B: The total thermal energy is greater in a large body of water than one much smaller
Explanation:
A large lake filled filled with cool water will have more thermal energy than smaller pond filled with warmer water because the total thermal energy is greater in a large body of water than one that is much smaller.
Thermal energy is a form of kinetic energy usually due to transfer of heat energy.
Amount of heat energy is dependent on the differences in temperature, mass and specific heat capacity of a body.
Both lake water will have the same specific heat capacity. Since larger body of water has more mass, it will possess more thermal energy.
learn more:
Specific heat capacity brainly.com/question/7210400
Thermal energy brainly.com/question/914750
#learnwithBrainly
The correct answer is (a) wave the fumes toward your nose with your hand. If you smell the chemicals directly, it could be harmful too your health, especially if they are strong. Also remember to <em>never </em>smell chemicals unless you are being told to do so.
12 protons
13 neutrons
12 electrons
An isotope is an atom with a different number of neutrons but same number of protons
This is a dilution that requires a certain volume from the stock solution to be diluted with distilled water to make a solution of HBr with a lesser concentration than the stock solution
Following dilution formula can be used
c1v1 = c2v2
Where c1 is concentration and v1 is the volume of the stock solution
c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting these values
10.0 M x v1 = 3.0 x 450.0 mL
v1 = 135.0 mL
A volume of 135.0 mL from HBr stock solution needs to be taken and diluted with distilled water upto 450.0 mL. The resulting solution will have a concentration of 3.0 M
Answer:
b) The boiling point of the solution is always greater than the boiling point of the pure solvent.
Explanation:
Hello,
In this case, when we add a nonvolatile solute to a volatile solvent which has a relatively low boiling point, we can evidence the increase of the boiling point of the resulting solution as more energy must be supplied to take the molecules from liquid to gas. This fact matches with the boiling point elevation colligative property due to the solute's addition, which states that the boiling point of the solution is always greater than the boiling point of the pure solvent, therefore, answer is b).
Best regards.