Given that,
Capacity = 3.6 gallons per minutes
Convert it into milliliters per seconds
Since, 1 gallon = 3.79 liters
1 liters = 1000 milliliters
Capacity= (3.6*3.79*1000)/(60)
Capacity = 227.4 milliliters per second.
<h2>
Energy used by heater is 8.21 x 10⁶ J</h2>
Explanation:
Energy = Power x Time
Power = Voltage x Current
Voltage = 120 V
Current = 9.5 A
Power = Voltage x Current
Power = 120 x 9.5 = 1140 W
Time = 2 hours = 2 x 60 x 60 = 7200 s
Energy = Power x Time
Energy = 1140 x 7200
Energy = 8208000 J
Energy used by heater is 8.21 x 10⁶ J
Answer:
The thermal conductivity of the wall = 40W/m.C
h = 10 W/m^2.C
Explanation:
The heat conduction equation is given by:
d^2T/ dx^2 + egen/ K = 0
The thermal conductivity of the wall can be calculated using:
K = egen/ 2a = 800/2×10
K = 800/20 = 40W/m.C
Applying energy balance at the wall surface
"qL = "qconv
-K = (dT/dx)L = h (TL - Tinfinity)
The convention heat transfer coefficient will be:
h = -k × (-2aL)/ (TL - Tinfinty)
h = ( 2× 40 × 10 × 0.05) / (30-26)
h = 40/4 = 10W/m^2.C
From the given temperature distribution
t(x) = 10 (L^2-X^2) + 30 = 30°
T(L) = ( L^2- L^2) + 30 = 30°
dT/ dx = -2aL
d^2T/ dx^2 = - 2a
Answer:
The answer is 1.87nm/s.
Explanation:
The
water loss must be replaced by
of sap. 110g of sap corresponds to a volume of

thus rate of sap replacement is

The volume of sap in the vessel of length
is
,
where
is the cross sectional area of the vessel.
For 2000 such vessels, the volume is

taking the derivative of both sides we get:

on the left-hand-side
is the velocity
of the sap, and on right-hand-side
; therefore,

and since the cross-sectional area is
;
therefore,

solving for
we get:


which is the upward speed of the sap in each vessel.
Answer:
False.
Explanation:
Backbone Cabling: A system of cabling that connects the equipment rooms and telecommunications rooms.
Horizontal Cabling: The system of cabling that connects telecommunications rooms to individual outlets or work areas on the floor.