Question in incomplete, complete question is:
Technetium (Tc; Z = 43) is a synthetic element used as a radioactive tracer in medical studies. A Tc atom emits a beta particle (electron) with a kinetic energy (Ek) of
. What is the de Broglie wavelength of this electron (Ek = ½mv²)?
Answer:
is the de Broglie wavelength of this electron.
Explanation:
To calculate the wavelength of a particle, we use the equation given by De-Broglie's wavelength, which is:

where,
= De-Broglie's wavelength = ?
h = Planck's constant = 
m = mass of beta particle = 
= kinetic energy of the particle = 
Putting values in above equation, we get:


is the de Broglie wavelength of this electron.
They move fast enough to overcome the forces of attraction that hold them together, becoming a gas.
ITS THAT :)
Correct Answer: Option C
Reason:
<span>The </span>Pauli Exclusion Principle<span> states as '<em>in an atom or molecule, no two electrons can have the same four electronic quantum numbers. Further, an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.</em>'
</span>
Thus, it can be seen that in option C, electrons in last 2 subshell have electrons with same spin, which is a violation of Pauli Exclusion Principle .
Answer:
½O 2 + 2e - + H 2O → 2OH.
Explanation:
Redox reactions - Higher
In terms of electrons:
oxidation is loss of electrons
reduction is gain of electrons
Rusting is a complex process. The example below show why both water and oxygen are needed for rusting to occur. They are interesting examples of oxidation, reduction and the use of half equations:
iron loses electrons and is oxidised to iron(II) ions: Fe → Fe2+ + 2e-
oxygen gains electrons in the presence of water and is reduced: ½O2 + 2e- + H2O → 2OH-
iron(II) ions lose electrons and are oxidised to iron(III) ions by oxygen: 2Fe2+ + ½O2 → 2Fe3+ + O2-
Answer:
12.0108408
Explanation:
Denote the element with a letter like say X. Since it has a subscript of 5, then, X5.
Molecular mass=102.133g/mol.
% of X in compound =58.8/100
=0.588
Mass of X in the compound = 0.588*102.133 ( the % of X in compound * molar mass of compound)
= 60.054204
X5=60.054204
Then element X has a mass of 60.054204/5=12.0108408