The volume is 2.23 liters of hydrogen gas.
<u>Explanation</u>:
moles of C = grams / molecular mass of C
= 1.04 g / 12.011 g/mol.
= 0.086
The ratio between C and H2 is 1 : 1
moles H2 = 0.086
V = nRT / p
= 0.086 x 0.08206 x 316 K / 1.0 atm
V = 2.23 L.
The correct answer is option 2. A 0.8 M aqueous solution of NaCl has a higher boiling point and a lower freezing point than a 0.1 M aqueous solution of NaCl. This is explained by the colligative properties of solutions. For the two properties mentioned, the equation for the calculation of the depression and the elevation is expressed as: ΔT = -Km and <span>ΔT = Km, respectively. As we can see, concentration and the change in the property has a direct relationship.</span>
Besides producing hydrogen ions in water, all Arrhenius acids have a few things in common. They have pH values anywhere from 0 up to 7, they taste and smell sour and they will turn pH paper pink, red, or orange.
<h3>What Arrhenius acids?</h3>
A substance that raises the concentration of H+ ions in an aqueous solution is known as an Arrhenius acid. Traditional Arrhenius acids are highly polarized covalent substances that dissociate in water to form an anion (A-) and the cation H+.
Aqueous Arrhenius acids have distinguishing characteristics that serve as a useful definition of an acid. Acids can turn blue litmus red, produce aqueous solutions with a sour taste, and react with bases and some metals (like calcium) to generate salts. The Latin word acidus/acre, which means "sour," is where the word acid originates.
Although the precise definition solely refers to the solute, the term "acid" is sometimes used to refer to an aqueous solution of an acid that has a pH lower than 8.
To learn more about Arrhenius acids from the given link:
brainly.com/question/22095536
#SPJ4
Uranus. Its axis is tilted to almost 90 degrees.