Answer:
Step-by-step explanation:
We have to find the values of the given trigonometric ratios at the angle indicated. Thus,
(A) The given trigonometric function is:
![cos270^{\circ}](https://tex.z-dn.net/?f=cos270%5E%7B%5Ccirc%7D)
Since, the function lies in Quadrant III, therefore the value of the function will be negative.
Also, ![cos270^{\circ}=-(0)=0](https://tex.z-dn.net/?f=cos270%5E%7B%5Ccirc%7D%3D-%280%29%3D0)
(B) The given trigonometric function is:
![sin270^{\circ}](https://tex.z-dn.net/?f=sin270%5E%7B%5Ccirc%7D)
Since, the function lies in Quadrant III, therefore the value of the function will be negative.
Also, ![sin270^{\circ}=-1](https://tex.z-dn.net/?f=sin270%5E%7B%5Ccirc%7D%3D-1)
(C) The given trigonometric function is:
![tan270^{\circ}](https://tex.z-dn.net/?f=tan270%5E%7B%5Ccirc%7D)
Since, the function lies in Quadrant III, therefore the value of the function will be negative.
Also, ![tan270^{\circ}=undefined](https://tex.z-dn.net/?f=tan270%5E%7B%5Ccirc%7D%3Dundefined)
(D) The given function is:
![cos0^{\circ}](https://tex.z-dn.net/?f=cos0%5E%7B%5Ccirc%7D)
Since, the function lies in Quadrant I, therefore the value of the function will be positive.
Also, ![cos0^{\circ}=1](https://tex.z-dn.net/?f=cos0%5E%7B%5Ccirc%7D%3D1)
(E) The given function is:
![sin0^{\circ}](https://tex.z-dn.net/?f=sin0%5E%7B%5Ccirc%7D)
Since, the function lies in Quadrant I, therefore the value of the function will be positive.
Also, ![sin0^{\circ}=0](https://tex.z-dn.net/?f=sin0%5E%7B%5Ccirc%7D%3D0)
(F) The given function is:
![tan0^{\circ}](https://tex.z-dn.net/?f=tan0%5E%7B%5Ccirc%7D)
Since, the function lies in Quadrant I, therefore the value of the function will be positive.
Also, ![tan0^{\circ}=0](https://tex.z-dn.net/?f=tan0%5E%7B%5Ccirc%7D%3D0)