Answer:When the Moon is between the Earth and the Sun, the bright side of the Moon is facing away from the Earth, and we have a New Moon.
Explanation:
Answer:
Adding a catalyst - More collisions every second and more collisions with enough energy to break bonds.
Increase in pressure - more collisions every second
Increase in temperature - more collisions every second with enough energy to break bonds
Explanation:
According to the collision theory, chemical reaction occurs as a result of collision between reacting particles. Only particles that possess energy above the activation energy of the reaction can collide and result in product formation. Collision of particles having energy less than the activation energy merely result in elastic collisions.
Adding a catalyst lowers the activation energy of the reaction. If the activation energy is lowered, more reactants collide and more of those collisions now have enough energy to break bonds.
When the temperature is increased, the particles become more energetic hence more collisions with energy to break bonds occur.
Increase in pressure brings the reactant particles into close proximity hence more collisions occur.
Answer:
The electrons of an atom are typically divided into two categories: valence and core electrons. Valence electrons occupy the outermost shell or highest energy level of an atom while core electrons are those occupying the innermost shell or lowest energy levels
Explanation:
i hope u get it :))
Answer:
H3PO4 + 5 HCl → PCl5 + 4 H2O
Explanation:
The given equation is
H3PO4 + HCl = PCl5 + H2O
The above chemical equation has one P atom on both the sides, hence phosphorus is balanced
There are 5 Cl on the RHS but only one Cl on the LHS. On balancing the chlorine, we get -
H3PO4 + 5HCl = PCl5 + H2O
Now, there are 8 hydrogen atom on the LHS but only two on the RHS. On balancing the hydrogen on both the sides, the new equation become
H3PO4 + 5HCl = PCl5 + 4H2O
Let us check for oxygen
Oxygen on LHS = 4 and oxygen on RHS = 4
Thus, the balanced equation is H3PO4 + 5HCl = PCl5 + 4H2O
Answer:
The answers are
1. Scientists use seismometers to measure the earthquake activity that occurs beneath a volcano. They then predict the eruption of that volcano.
2. Scientists measure the amount of these gases to determine the amount of magma present in the volcanic reservoir.
Explanation:
When a volcano is near eruption Earthquake activity gets stronger and stronger. Scientists use a wide variety of techniques to monitor volcanoes, including seismographic detection of the earthquakes and tremor that almost always precede eruptions, precise measurements of ground deformation that often accompanies the rise of magma, changes in volcanic gas emissions, and changes in gravity and.
Scientists can use the FTIR or Fourier Transform Infrared Spectrometer to measure dissolved volatile concentrations as described above or can be used to measure several gases emitted from a volcano simultaneously. The device can be used both as an open-path or closed-path system. I had just taken the test and got the question right as well