Answer:
F = G M m / R^2 gravitational force on planet of mass m.
None of these quantities change in the given hypothesis so
there will be no change in the orbit of mass m
The value of the second charge is 1.2 nC.
<h3>
Electric potential</h3>
The work done in moving the charge from infinity to the given position is calculated as follows;
W = Eq₂
E = W/q₂
<h3>Magnitude of second charge</h3>
The magnitude of the second charge is determined by applying Coulomb's law.
Thus, the value of the second charge is 1.2 nC.
Learn more about electric potential here: brainly.com/question/14306881
Answer:
Speed of another player, v₂ = 1.47 m/s
Explanation:
It is given that,
Mass of football player, m₁ = 88 kg
Speed of player, v₁ = 2 m/s
Mass of player of opposing team, m₂ = 120 kg
The players stick together and are at rest after the collision. It shows an example of inelastic collision. Using the conservation of linear momentum as :
V is the final velocity after collision. Here, V = 0 as both players comes to rest after collision.
So, the speed of another player is 1.47 m/s. Hence, this is the required solution.
Answer:
The instantaneous velocity is the specific rate of change of position (or displacement) with respect to time at a single point (x,t) , while average velocity is the average rate of change of position (or displacement) with respect to time over an interval.Average velocity : Average velocity of a body is defined as the change in position or displacement (Δx) divided by time interval (Δt) in which that displacement occurs.
Instantaneous velocity : The instantaneous velocity of a body is the velocity of the body at any instant of time or at any point of its path .
velocity can be positive , negative or zero.
By studying speed and velocity we come to the result that at any time interval average speed of an object is equal or more than the average but instantaneous speed is equal to instantaneous velocity.
Answer:
Ice is the solid state of water, a normally liquid substance that freezes to the solid state at temperatures of 0 °C (32 °F) or lower and expands to the gaseous state at temperatures of 100 °C (212 °F) or higher.
Explanation: