To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>
Internal energy of the system changes by ΔE = 178 J.
Heat given to the system = Q = +658 J.
According to the first law of thermodynamics,
ΔE = Q + W
178 = 658 + W
∴ W = 178-658 = -480 J
Minus sign indicates that work is done by the system.
The complete sentence is:
A calorimeter directly measures changes in temperature in order to calculate specific heat.
In fact, the amount of energy acquired/released by a substance is directly proportional to its change in temperature due to the equation

where Q is the amount of energy, m is the mass of the substance, Cs is the specific heat of the substance and
is the change in temperature. Therefore, by knowing Q, m and by measuring the change in temperature, it is possible to calculate Cs, the specific heat capacity of the substance.
The answer is D light rays shine on an object which then reflects back to our retina
7. 1.47 x 10^5mm to kilometers
Answer: 0.147
Shown answer:
8.4.7 kg to pounds
Answer:
Shown answer:
9.138.4oz to grams
Answer: 3923.574
Shown Answer:
10. 65.5km to miles
Answer: 40.69981
Shown answer:
11. 23.6ft to cm
Answer: 719.328
Shown answer:
12. 2.36 x 10^4 s to days
Answer: 0.273148148 days
Shown answer:
13. 13.6 L to U.S. Liquid quarts
Answer:
Shown answer:
show the work
help me and ill help you?