Answer:
g' = 10.12m/s^2
Explanation:
In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.
You use the following formula:
(1)
l: length of the pendulum = ?
g: acceleration due to gravity at sea level = 9.79m/s^2
T: period of the pendulum at sea level = 1.2s
You solve for l in the equation (1):

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

g': acceleration due to gravity at the top of the mountain
T': new period of the pendulum

The acceleration due to gravity at the top of the mountain is 10.12m/s^2
Explanation:
We have,
The initial position of an object is zero.
The starting velocity is 3 m/s and the final velocity was 10 m/s.
The object moves with constant acceleration..
The area covered under the velocity-time graph gives displacement of the object. The correct option is "the area of the rectangle plus the area of the triangle under the line".
Answer:
This can be the FBD of the bag.
(my bag looks more like a box tho ^^")
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s