Answer:
Because of the formula 
Explanation:
In this problem we are describing two different processes:
- Nuclear fission occurs when a heavy, unstable nucleus breaks apart into two or more lighter nuclei
- Nuclear fusion occurs when two (or more) light nuclei fuse together producing a heavier nucleus
In both cases, the total mass of the final products is smaller than the total mass of the initial nuclei.
According to Einsten's formula, this mass difference has been converted into energy, as follows:

where:
E is the energy released in the reaction
is the mass defect, the difference between the final total mass and the initial total mass
is the speed of light
From the formula, we see that the factor
is a very large number, therefore even if the mass defect
is very small, nuclear fusion and nuclear fission release huge amounts of energy.
Answer: The result of "the upper bound of the density" does not go on the denominator.
So simplified, no. The answer is no.
<span>Since the torque involves the product of force times lever arm, a small force can exert a greater torque than a larger force if the small force has a large enough lever arm.
With a large force exerts a small torque is a gate, hinged in its vertical line (axis). When pushed from a point near to the hinge, a very large amount is needed to open the gate.
</span><span>
</span>
Think its Positive
hope this helpes