Answer: IONIC EQUATION.
Explanation:
A chemical equation is defined as the form by which a chemical reaction is represented mathematically. These are written in the form of symbols and chemical formulas of reactants and products which are taking part in the chemical reaction. A chemical equation can be written in two forms, these include:
--> MOLECULAR EQUATION: in this type of equations, the compounds are written and represented in a molecular form. This is sometimes referred to as a balanced equation.
--> IONIC EQUATION: This is a type of chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions. A typical illustrated example is seen in the reaction between AgNO3(aq) and NaCl(aq) :
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq)
The (aq) written in the above equation signifies they are in aqueous solution.
Noble gas. Noble gas, any of the seven chemical elements<span> that make up Group 18 (VIIIa) of the </span>periodic table<span>. The </span>elements<span> are </span>helium<span> (</span>He<span>), </span>neon<span> (</span>Ne<span>), argon (Ar), krypton (Kr), </span>xenon<span> (</span>Xe<span>), radon (Rn), and oganesson (Og)</span>
<u>Answer:</u> The freezing point of solution is 5.35°C
<u>Explanation:</u>
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 5.5°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal freezing point elevation constant = 4.90°C/m
= Given mass of solute (naphthalene) = 2.60 g
= Molar mass of solute (naphthalene) = 128.2 g/mol
= Mass of solvent (benzene) = 675 g
Putting values in above equation, we get:

Hence, the freezing point of solution is 5.35°C
Well, yeah, because the chemicals in the AlkaSeltzer when in water, fizes, because of the chemicals in the pallet.
Answer:
if charge of ion is positive then it will loose electron
if charge of ion is negative it will gain electron