Answer:
b. 0.50 moles
Explanation:
To solve this problem we use <em>Avogadro's number</em> (6.023x10²³ atoms/mol).
By <u>dividing the number of atoms (or molecules) by that number</u>, we can calculate how many moles they represent.
- 3.01x10²³ atoms ÷ 6.023x10²³ atoms/mol = 0.50 moles
So the answer is option b. 0.50 moles.
There is an increase in the number of collisions between particles and the walls of the container<span>. b. There is an increase in the </span>temperature of the gas. If<span> the volume of a </span>container<span> of </span>gas<span> is reduced, what will </span>happen to the pressure inside<span> the </span>container
Answer:
HX (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + X⁻ (aq)
Acid Base Conj. acid Conj. base
Explanation:
The equation is:
HX (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + X⁻ (aq)
This is the typical equilibrium for a weak acid. It would complete if we notice the Ka.
HX (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + X⁻ (aq) Ka
1 mol of hypothetic HX acid react to 1 mol of water in order to release a proton and make hydronium and generate the X⁻ anion.
HX will be the acid, in this case a weak one and water will be the base. Water is able to accept a proton to make itslef hydronium
Hydronium is the conjugate acid.
The X⁻ will be the conjugate strong base.
This ion can generate the acid form again, that's why it is strong, because it can make hydrolisis.
X⁻ (aq) + H₂O (l) ⇄ HX (aq) + OH⁻(aq) Kb
In this case, the anion will be the conjugate base which it takes a proton from water (acid form) to make a conjugate acid, the HX and a conjugate base, OH⁻
Answer:
5
Explanation:
It requires 20 chracters to fill this answer