Answer:

Explanation:
The volume flow rate of a fluid in a pipe is given by:

where
A is the cross-sectional area of the pipe
v is the speed of the fluid
In this problem, at the initial point we have
v = 0.84 m/s is the speed of the water
r = 0.21 m is the radius of the pipe, so the cross-sectional area is

So, the volume flow rate is

Answer:
The refractive index of glass, 
Solution:
Brewster angle is the special case of incident angle that causes the reflected and refracted rays to be perpendicular to each other or that angle of incident which causes the complete polarization of the reflected ray.
To determine the refractive index of glass:
(1)
where
= refractive index of glass
= refractive index of glass
Now, using eqn (1)



Answer:
What happens to the wavelength of a wave if you double the frequency?
If the frequency of a wave is increased, what happens to its wavelength? As the frequency increases, the wavelength decreases. 2. If the frequency is doubled, the wavelength is only half as long.
Explanation:
Explanation:
F = 20N m= m1 a=10m/s²
m=m2 a=5m/s²
F = ma
<u>for the first one</u><u>:</u><u> </u>
f=m1 × a
20 = m1 ×10
20=10m1
m1=20/10
m1=2
<u>for</u><u> </u><u>the</u><u> </u><u>second</u><u> </u><u>one</u><u> </u><u>:</u>
f=m2×a
20=m2×5
m2= 20/5
m2= 4
since F=ma
F=(m1+m2) ×a
F =(4+2)×a
F =6×a
F=20(from the question above )
20=6×a
a=20/6
a=3.33
The work done to transport an electron from the positive to the negative terminal is 1.92×10⁻¹⁹ J.
Given:
Potential difference, V = 1.2 V
Charge on an electron, e = 1.6 × 10⁻¹⁹ C
Calculation:
We know that the work done to transport an electron from the positive to the negative terminal is given as:
W.D = (Charge on electron)×(Potential difference)
= e × V
= (1.6 × 10⁻¹⁹ C)×(1.2 V)
= 1.92 × 10⁻¹⁹ J
Therefore, the work done in bringing the charge from the positive terminal to the negative terminal is 1.92 × 10⁻¹⁹ J.
Learn more about work done on a charge here:
<u>brainly.com/question/13946889</u>
#SPJ4