Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms
Explanation: In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:
I(t)=io*Exp(-t/τ)
and also we consider that io=V/R=(1.5/6.43*10^3)
=233.28 A
then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6
=22.31 ms
Finally the time to reduce the current to 2.57% of its initial value is obtained from:
I(t)=io*Exp(-t/τ) for I(t)/io=0.0257=Exp(-t/τ) then
ln(0.0257)*τ =-t
t=-ln(0.0257)*τ=81.68 ms
As ball is projected up in air at an angle of 45 degree without any air resistance
Let the initial speed will be v
now we will have
In x direction

in y direction

now displacement in x direction

displacement in y direction

now from above two equations we have


so above equation is a quadratic equation and hence it will be a parabolic curve
so correct answer will be
<em>C. parabolic curve.</em>
energy associate with position or shape
Answer:
189 m/s
Explanation:
The pilot will experience weightlessness when the centrifugal force, F equals his weight, W.
So, F = W
mv²/r = mg
v² = gr
v = √gr where v = velocity, g = acceleration due to gravity = 9.8 m/s² and r = radius of loop = 3.63 × 10³ m
So, v = √gr
v = √(9.8 m/s² × 3.63 × 10³ m)
v = √(35.574 × 10³ m²/s²)
v = √(3.5574 × 10⁴ m²/s²)
v = 1.89 × 10² m/s
v = 189 m/s