Specific heat capacity of any substance comes with the unit : J/(g*degree C)
for molar capacity , change gram -> moles unit ( J / moles * degree C)
4.18 J / mol - degree C
H = 1.01 g * 2 = 2.02 g
O = 16 g
2.02 + 16 = 18.02 g
Now :- 4.18 J / mol- degree C) * 18.02 / 1 mole H2O
molar heat = 75.3 J / mol - degree C
<span />
I believe the answer is orbital hybridization theory
<u>Question:</u>
For the cell constructed from the hydrogen electrode and metal-insoluble salt electrode, B) calculate the mean activity coefficient for 0.124 b HCl solution if E=0.342 V at 298 K
<u>Answer:</u>
The mean activity coefficient for HCl solution is 0.78.
<u>Explanation:</u>
Activity coefficient is defined as the ratio of any chemical activity of any substance with its molar concentration. So in an electrochemical cell, we can write activity coefficient as γ. The equation for determining the mean activity coefficient is

As we know that
= 0.22 V and E = 0.342 V, the equation will become








So, the mean activity coefficient is 0.78.
That's why it's important for you to use water wisely and not to waste it. When you waste water, you're taking water that other people might need. But when you use water carefully, you leave more water for other people to use. It is also important to use water carefully because our weather can be unpredictable.
Q = mcΔT = (4.00 g)(0.129 J/g•°C)(40.85 °C - 0.85 °C)
Q = 20.6 J of energy was involved (more specifically, 20.6 J of heat energy was absorbed from the surroundings by the sample of solid gold).