Answer:
pH = 12.33
Explanation:
Lets call HA = butanoic acid and A⁻ butanoic acid and its conjugate base butanoate respectively.
The titration reaction is
HA + KOH ---------------------------- A⁻ + H₂O + K⁺
number of moles of HA : 118.3 ml/1000ml/L x 0.3500 mol/L = 0.041 mol HA
number of moles of OH : 115.4 mL/1000ml/L x 0.400 mol/L = 0.046 mol A⁻
therefore the weak acid will be completely consumed and what we have is the unreacted strong base KOH which will drive the pH of the solution since the contribution of the conjugate base is negligible.
n unreacted KOH = 0.046 - 0.041 = 0.005 mol KOH
pOH = - log (KOH)
M KOH = 0.005 mol / (0.118.3 +0.1154)L = 0.0021 M
pOH = - log (0.0021) = 1.66
pH = 14 - 1.96 = 12.33
Note: It is a mistake to ask for the pH of the <u>acid solutio</u>n since as the above calculation shows we have a basic solution the moment all the acid has been consumed.
According to the law of conservation of mass, the amount of BARIUM present of the reactants is the same as the amount present in the products (the precipitate).
(11.21 g BaSO4) / (233.4 g/mol BaSO4) = 0.0480 mol BaSO4 and original barium salt
(10.0 g) / (0.0480 mol) = 208.3 g/mol
So it must have been BaCl2, because the molar mass of Barium is 137 which leave 71 grams left. Since Barium is a +2 charge, it means the atom next to it must be twice. Chlorine mass is 35, which twice is 71
Since the question is incomplete, the table has been searched in order to comply with the question.
Based on the table that I have provided, the order of increasing
depth from shallowest to deepest are the following; A,B,C,D,E. The reason that
this is the order to be chosen because the one responsible for making water
dense is the salt that is on the water and by that, the base is likely to sink
whereas the ones with less salt won’t be as thick compared those who have much
salt and will skim on its top.