Where’s the questions hun? I don’t even see the questions you need answered
Answer: The questions looks unclear
Explanation: Periodic table is a table that contains elements arranged according to their increasing atomic number.
1. D belongs to group 4
E. Belongs to group 7
B belongs to group 1
A belongs to group 8. A noble gas.
R belongs to group 3. K belongs to group 6 C belongs to group 1. H belongs to group 8
It absorbed 41,600 joules.
Explanation:
If the sample of sucrose burnt in the calorimeter releases 41600Joules of heat, then the water in the calorimeter will absorb 41600J.
The heat lost by burning the sucrose in the calorimeter is also the heat gained by the water therein.
A calorimeter is a device by prevents heat loss to the environment in any form.
It is specially designed to minimize heat loss by conduction, convection radiation.
Therefore, since no heat is lost, the heat released by burning the sucrose is used in heating the water there.
learn more:
Specific heat brainly.com/question/7210400
#learnwithBrainly
Answer:
Jeweler B = more accurate
Jeweler A = more precise
Error:
0.008, 0
% error :
0.934% ; 0
Explanation:
Given that:
True mass of nugget = 0.856
Jeweler A: 0.863 g, 0.869 g, 0.859 g
Jeweler B: 0.875 g, 0.834 g, 0.858 g
Official measurement (A) = 0.863 + 0.869 + 0.859 = 2.591 / 3 = 0.864
Official measurement (B) = 0.875 + 0.834 + 0.858 = 2.567 / 3 = 0.8556
Accuracy = closeness of a measurement to the true value
Accuracy = true value - official measurement
Jeweler A's accuracy :
0.856 - 0.864 = - 0.008
Jeweler B's accuracy :
0.856 - 0.856 = 0.00
Therefore, Jeweler B's official measurement is more accurate as it is more close to the true value of the gold nugget.
However, Jeweler A's official measurement is more precise as each Jeweler A's measurement are closer to one another than Jeweler B's measurement which are more spread out.
Error:
Jeweler A's error :
0.864 - 0.856 = 0.008
% error =( error / true value) × 100
% error = (0.008/0.856) × 100% = 0.934%
Jeweler B's error :
0.856 - 0.856 = 0 ( since the official measurement as been rounded to match the decimal representation of the true value)
% error = 0%