A wave created by shaking a rope up and down is called a:
(According to me and certified experts) Transverse wave.
If this helps, then please give Brainliest!
data which is expressed in form of following way

here in above expression
= true value
= uncertainty in the value
now the relative uncertainty is given as

now by above formula we can say
a) 2.70 ± 0.05cm
here
True value = 2.70
uncertainty = 0.05
Relative uncertainty =
= 0.0185
b) 12.02 ± 0.08cm
here
True value = 12.02
uncertainty = 0.08
Relative uncertainty =
= 0.00665
Answer:
Explanation:
Given the following :
Speed (V) = speed of 2.30×10^7 m/s
Acceleration (a) = 1.70×10^13 m/s^2
Using the right hand rule provided by Lorentz law:
B = F / qvSinΘ
Where B = magnitude of the magnetic field
v = speed of the particle
Θ = 90° (perpendicular to the field)
q = charge of the particle
SinΘ = sin90° = 1
Note F = ma
Therefore,
B = ma / qvSinΘ
Mass of proton = 1.67 × 10^-27
Charge = 1.6 × 10^-19 C
B = [(1.67 × 10^-27) × (1.70 × 10^13)] / (1.6 × 10^-19) × (2.30 × 10^7) × 1
B = 2.839 × 10^-14 / 3.68 × 10^-12
B = 0.7715 × 10^-2
B = 7.72 × 10^-3 T
2) Magnetic field will be in the negative y direction according to the right hand thumb rule.
Since Velocity is in the positive z- direction, acceleration in the positive x - direction, then magnetic field must be in the negative y-direction.
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
<span>the scientists want the probe to stop immediately and move at constant velocity.
HAPPY VALENTINES </span>