Answer:
The person in charge is: "Alan Baddeley."
Explanation:
Hope this helps!!!
Please mark as brainliest:)
Answer:
Option A.
2Na + 2H2O —> 2NaOH + H2
Explanation:
To know which option is correct, we shall do a head count of the number of atoms present on both side to see which of them is balanced. This is illustrated below below:
For Option A:
2Na + 2H2O —> 2NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 2 Na
4 H >>>>>>>>>>>> 4 H
2 O >>>>>>>>>>>> 2 O
Thus, the above equation is balanced.
For Option B:
2Na + 2H2O —> NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 1 Na
4 H >>>>>>>>>>>> 3 H
2 O >>>>>>>>>>>> 1 O
Thus, the above equation is not balanced.
For Option C:
2Na + H2O —> 2NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 2 Na
2 H >>>>>>>>>>>> 4 H
1 O >>>>>>>>>>>> 2 O
Thus, the above equation is not balanced.
For Option D:
Na + 2H2O —> NaOH + 2H2
Reactant >>>>>>> Product
1 Na >>>>>>>>>>> 1 Na
4 H >>>>>>>>>>>> 5 H
2 O >>>>>>>>>>>> 1 O
Thus, the above equation is not balanced.
From the illustrations made above, only option A is balanced.
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Answer:
Chemical reactions do not involve changes in the chemical bonds that join
atoms in compounds :
<u>False</u>
Explanation:
Chemical reaction are the reaction in which old bonds break and new bonds are formed . The formation of new bond result in formation of new compounds . This happen because new bond are result of linking different atoms by the bond.
For example : Water formation from Oxygen and Hydrogen is a chemical process :

Original(old) bonds are :
H-H bond in H2 and O-O bonds in O2
In H2 = Hydrogen is joined to Hydrogen
IN O2 = Oxygen is joined to oxygen
New Bonds =
O-H bonds in water (H2O)
Oxygen is joined to hydrogen = New Bond formation
Hence,
<u>Chemical reactions do involve changes in the chemical bonds that join
</u>
<u>atoms in compounds</u>
<u />