Answer:
The electronic configuration of Fe2+ is 1s2 2s2 2p6 3s2 3p6 3d6 and Fe3+ is 1s2 2s2 2p6 3s2 3p6 3d5. Fe2+ contains 2 fewer electrons compared to the electronic configuration of Fe.
Answer:
V₁ = √ (gy / 3)
Explanation:
For this exercise we will use the concepts of mechanical energy, for which we define energy n the initial point and the point of average height and / 2
Starting point
Em₀ = U₁ + U₂
Em₀ = m₁ g y₁ + m₂ g y₂
Let's place the reference system at the point where the mass m1 is
y₁ = 0
y₂ = y
Em₀ = m₂ g y = 2 m₁ g y
End point, at height yf = y / 2
= K₁ + U₁ + K₂ + U₂
= ½ m₁ v₁² + ½ m₂ v₂² + m₁ g
+ m₂ g 
Since the masses are joined by a rope, they must have the same speed
= ½ (m₁ + m₂) v₁² + (m₁ + m₂) g 
= ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g 
How energy is conserved
Em₀ = 
2 m₁ g y = ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g 
2 m₁ g y = ½ (3m₁) v₁² + (3m₁) g y / 2
3/2 v₁² = 2 g y -3/2 g y
3/2 v₁² = ½ g y
V₁ = √ (gy / 3)
Answer:
= 3521m/s
The tangential speed is approximately 3500 m/s.
Explanation:
F = m * v² ÷ r
Fg = (G * M * m) ÷ r²
(m v²) / r = (G * M * m) / r²
v² = (G * M) / r
v = √( G * M ÷ r)
G * M = 6.67 * 10⁻¹¹ * 5.97 * 10²⁴ = 3.98199 * 10¹⁴
r = 32000km = 32 * 10⁶ meters
G * M / r = 3.98199 * 10¹⁴ ÷ 32 * 10⁶
v = √1.24 * 10⁷
v = 3521.36m/s
The tangential speed is approximately 3500 m/s.
It would be C as the law says "<span>Formally stated, </span>Newton's third law<span> is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object."</span>