The statement that can be used to answer this question is:
"If the cylinder is brought higher then, its temperature when brought down becomes higher because a greater amount of potential energy is converted to thermal energy."
The potential energy is converted to thermal energy when the object is released the velocity becomes higher because of the acceleration due to gravity.
Answer:
a) The angular acceleration of the beam is 0.5 rad/s²CW (direction clockwise due the tangential acceleration is positive)
b) The acceleration of point A is 3.25 m/s²
The acceleration of point E is 0.75 m/s²
Explanation:
a) The relative acceleration of B with respect to D is equal:
Where
aB = absolute acceleration of point B = 2.5 j (m/s²)
aD = absolute acceleration of point D = 1.5 j (m/s²)
(aB/D)n = relative acceleration of point B respect to D (normal direction BD) = 0, no angular velocity of the beam
(aB/D)t = relative acceleration of point B respect to D (tangential direction BD)
We have that
(aB/D)t = BDα
Where α = acceleration of the beam
BDα = 1 m/s²
Where
BD = 2
b) The acceleration of point A is:
(aA/D)t = ADαj
The acceleration of point E is:
(aE/D)t = -EDαj
So, first the formula of Impulse is
I = force * time
We have force but no time.
Then, find time.
Next find acceleration,
F = mass * acceleration
5 = 3 * a
1.67 m/s^2
Next find time,
Acceleration = change in velocity / time
Change in velocity is velocity final - velocity initial
1.67 = 3 - 9 / time
Time = 3.6 s (round to 2 s.f.)
Lastly,
Impulse = force * time
Impulse = 5 * 3.6
Impulse is 18 Ns
Answer:
554.27N
Explanation:
(a) The max frictional force exerted horizontally on the crate and the floor is,
Substitute the values,
μs=0.5
mass=113kg
g=9.81m/s
Ff=μsN
=μsmg
=(0.5 x 113 x 9.81)
Ff=554.27N