Answer:
1.73 m/s²
3.0 cm
Explanation:
Draw a free body diagram of the yo-yo. There are two forces: weight force mg pulling down, and tension force T pulling up 10° from the vertical.
Sum of forces in the y direction:
∑F = ma
T cos 10° − mg = 0
T cos 10° = mg
T = mg / cos 10°
Sum of forces in the x direction:
∑F = ma
T sin 10° = ma
mg tan 10° = ma
g tan 10° = a
a = 1.73 m/s²
Draw a free body diagram of the sphere. There are two forces: weight force mg pulling down, and air resistance D pushing up. At terminal velocity, the acceleration is 0.
Sum of forces in the y direction:
∑F = ma
D − mg = 0
D = mg
½ ρₐ v² C A = ρᵢ V g
½ ρₐ v² C (πr²) = ρᵢ (4/3 πr³) g
3 ρₐ v² C = 8 ρᵢ r g
r = 3 ρₐ v² C / (8 ρᵢ g)
r = 3 (1.3 kg/m³) (100 m/s)² (0.47) / (8 (7874 kg/m³) (9.8 m/s²))
r = 0.030 m
r = 3.0 cm
Answer:
The answer to the question is
The two balls, although of different masses, could be made to have the same demolishing force by setting the velocity of the 100 kg ball to 1.5 times the velocity of the 150 kg ball.
That is if V₁ is the velocity of the 150 kg ball and V₂ is the velocity of the 100 kg ball then V₂ = 1.5×V₁ for the demolishing effect of the two balls to be equal.
Explanation:
To answer the we are required to explain the meaning of momentum and state its properties
Momentum is a physical property of an object in motion. It indicates the amount of motion inherent in the object. An object in motion is said to have momentum
The types of momentum possessed by an object can be classified into either
1, Linear momentum or
2. Angular momentum
An object moving with a velocity, v has linear momentum while a spinning object has an angular momentum
The momentum is given by the formula
P = m × V
Where m = mass and
V = velocity
Newtons second law of motion states that, the force acting on an object is equivalent to the rate of change of momentum produced and acting in the direction of the force
Properties of momentum
From the above statements it means that the two balls can be made equivalent by having the appropriate amount of speed. That iis the two balls can have the same momentum thus for equal momentum effect, we have
150 kg × V₁ = 100 kg × V₂
or V₂ = 1.5×V₁
Answer : When we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
As the given reaction is an exothermic reaction in which the heat is released during a chemical reaction. That means the temperature is decreased on the reactant side.
For an exothermic reaction, heat is released during a chemical reaction and is written on the product side.

If the temperature is increases in the equilibrium then the equilibrium will shift in the direction where, temperature is getting decreased. Thus, the reaction will shift to the left direction i.e, towards the reactant.
Hence, when we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Answer:


Explanation:
d = Diameter of column = 0.5 inch
= Area of concrete = 
The strain in the system is conserved

Now


Stress is given by

The stress in the steel is 

The stress in the steel is 