1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
3 years ago
5

An object with a charge of -3.2 uC and a mass of 1.0×10^(-2) kg experiences an upward electric force, due to a uniform electric

field, equal in magnitude to its weight.
If the electric charge on the object is doubled while its mass remains the same, find the direction and magnitude of its acceleration.

upward
downward
to the left
to the right

Physics
1 answer:
USPshnik [31]3 years ago
6 0

Answer:

The magnitude of the acceleration is equal to 19.6m/s² and the acceleration is directed upwards though the magnitude of the charge has doubled. This is because the electric force is directed upwards and from newton's second law of motion the charge will have acceleration in the same direction as the electric force on the charge.

Explanation:

The detailed solution can be found in the attachment below.

Thank you for reading and I hope this is helpful to you.

You might be interested in
Friction depends on the types of surfaces involved and how hard the surfaces push together. Please select the best answer from t
LenKa [72]

True: Friction depends on the types of surfaces involved and how hard the surfaces push together.

5 0
3 years ago
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Sup
KengaRu [80]

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx

Where

x_{o}, x_{f} - Initial and final position, respectively, measured in meters.

F(x) - Force as a function of position, measured in newtons.

Given that F = k\cdot x and the fact that F = 25\,N when x = 0.3\,m - 0.2\,m, the spring constant (k), measured in newtons per meter, is:

k = \frac{F}{x}

k = \frac{25\,N}{0.3\,m-0.2\,m}

k = 250\,\frac{N}{m}

Now, the work function is obtained:

W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx

W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]

W = 0.313\,J

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be r(\theta) = 2\cdot \sin 5\theta. The area of the region enclosed by one loop of the curve is given by the following integral:

A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta

A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta

By using trigonometrical identities, the integral is further simplified:

A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta

A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta

A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta

A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)

A = 4\pi

The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

5 0
3 years ago
A heat pump with a COP of 3.15 is used to heat an air-tight house. When running, the heat pump consumes 5 kW of power. If the te
Jet001 [13]

Answer: 1026s, 17.1m

Explanation:

Given

COP of heat pump = 3.15

Mass of air, m = 1500kg

Initial temperature, T1 = 7°C

Final temperature, T2 = 22°C

Power of the heat pump, W = 5kW

The amount of heat needed to increase temperature in the house,

Q = mcΔT

Q = 1500 * 0.718 * (22 - 7)

Q = 1077 * 15

Q = 16155

Rate at which heat is supplied to the house is

Q' = COP * W

Q' = 3.15 * 5

Q' = 15.75

Time required to raise the temperature is

Δt = Q/Q'

Δt = 16155 / 15.75

Δt = 1025.7 s

Δt ~ 1026 s

Δt ~ 17.1 min

5 0
3 years ago
Read 2 more answers
Question 2 of 20
alukav5142 [94]

Answer: a

Explanation: because i said so

8 0
2 years ago
The last "hot house" or period of increased temperature occurred _____.
xxMikexx [17]
When there was know life on the earth
3 0
3 years ago
Other questions:
  • If Siobhan hits a 0.25 kg volleyball with 0.5 N of force, what is the acceleration of the ball?
    12·2 answers
  • A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns
    6·1 answer
  • John F. Kennedy was the youngest man ever to be elected President of the United States.
    13·1 answer
  • A toy car that is 0.12 m long is used to model the actions of an actual car that is 6 m long. which ratio shows the relationship
    5·1 answer
  • An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straight
    10·1 answer
  • What the answer to 3,5,6
    11·1 answer
  • A box is pulled 6 meters across the ground at a constant velocity by a horizontally applied force of 50 newtons. At the same tim
    11·1 answer
  • The temperature of a substance during an experiment can be modeled by the function f(x)=−7.5cos(πx30)+31.4 , where f(x) is the t
    7·2 answers
  • Which property of the wave makes it-(C)
    9·2 answers
  • How does the tension in your arms compare when you let yourself dangle motionless by both arms and by one arm
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!