The vesicles release neurotransmitters. These cross the synapse and are accepted by the receptors in the dendrites of the next neuron.
Explanation:
An axon, or nerve fiber, is a long slender projection of a nerve cell, or neuron, that conducts electrical impulses away from the neuron's cell body. Axons are in effect the primary transmission lines of the nervous system, and as bundles they help make up nerves.
When an action potential reaches the axon terminal, it depolarizes the membrane and opens voltage-gated Na+ channels. Na+ ions enter the cell, further depolarizing the presynaptic membrane.
<h2>
Answer: </h2><h2>
- Jupiter has orbiting moons.</h2><h2>
- The Sun has sunspots and rotates on its axis.</h2><h2>
- The Moon has mountains, valleys, and craters.</h2><h2>
- Venus goes through a full set of phases.</h2>
Explanation:
In 1609 Galileo built a telescope, with which he observed mountains and craters on the Moon, discovered Jupiter’s major satellites and the next year he published these discoveries in his book <em>The Sidereal Messenger</em>.
In addition, Galileo observed that Venus presented phases (such as those of the moon) together with a variation in size; observations that are only compatible with the fact that Venus rotates around the Sun and not around Earth. This is because <u>Venus presented its smaller size when it was in full phase and the largest size when it was in the new one, when it is between the Sun and the Earth. </u>
<u />
On the other hand, <u>although Galileo was not the first to observe sunspots</u>, he gave the correct explanation of their existence, which supported the idea that planets revolve around the Sun.
These observations and discoveries were presented by Galileo to the Catholic Church (which supported the geocentric theory at that time) as a proof that completely refuted Ptolemy's geocentric system and affirmed Copernicus' heliocentric theory.
(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
Answer:B
Explanation:
For work to be done, the object must move some distance as a result of a force
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s