Answer:
The maximum electric field strength is 0.0144 V/m.
Explanation:
Given that,
Electric potential created in the heart, V = 3.6 mV
Distance, d= 0.25 m
Frequency of the the electromagnetic wave, f = 1 Hz
We need to find the maximum electric field strength created. We know that the electric potential is given by :

E is the maximum electric field strength

So, the maximum electric field strength is 0.0144 V/m. Hence, this is the required solution.
The vector sum is the algebraic sum if the two vectors have the same direction.
The sum vector is zero if the two vectors have the same magnitude and opposite direction
Vector addition is a process that can be performed graphically using the parallelogram method, see attached, where the second vector is placed at the tip of the first and the vector sum goes from the origin of the first vector to the tip of the second.
There are two special cases where the vector sum can be reduced to the algebraic sum if the vectors are parallel
case 1. if the two vectors are parallel, the sum vector has the magnitude of the sum of the magnitudes of each vector
case 2. If the two vectors are antiparallel and the magnitude of the two vectors is the same, the sum gives zero.
In summary in the sum of vectors If the vectors are parallel it is reduced to the algebraic sum, also in the case of equal magnitude and opposite direction the sum is the null vector
Let m₁ = 3.0 kg and v₁ = + 8 m/s (so right is positive), and m₂ = 1.0 kg and v₂ = 0. The total momentum of the two balls before and after collision is conserved, so
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where v₁' = + 5 m/s and v₂' are the velocities of the two balls after colliding, so
(3.0 kg) (8 m/s) = (3.0 kg) (5 m/s) + (1.0 kg) v₂'
Solve for v₂' :
24 kg•m/s = 15 kg•m/s + (1.0 kg) v₂'
(1.0 kg) v₂' = 9 kg•m/s
v₂' = (9 kg•m/s) / (1.0 kg)
v₂' = + 9 m/s
which is to say, the second ball is given a speed of 9 m/s to the right after colliding with the first ball.