C the objects will repel each other with greater
force
Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz

Therefore, the wave speed is

The terminal velocity as it falls through still air is 4.65154 in/s.
The diameter of small water droplet is 1.25 mil= 1.25×0.0254×10^-3 m
= 3.175 × 10^-5 m
Now the viscosity of still air is η = 1.83× 10⁻⁵ Pa
So the formula for drag force is:
Fd = 6πηrv
where, v is the velocity.
Now to attain terminal velocity acceleration must be zero.
→ W = Fd
ρVg = 6πrηv
ρ × 4/3 πr³×g = 6πrηv
v = 2/9 × ρgr³/ η
v = 2/9 × 10³×9.81×(3.175×10^-3) / 18.6×10^-6
v = 0.1181 m/s
v = 4.65154 in/s
Learn more about terminal velocity here:
brainly.com/question/20409472
#SPJ4
Answer:
The correct answer is d. tension pneumothorax.
Explanation:
The increasing build-up of air that is in the pleural space is what we call the tension pneumothorax and this happens due to the lung laceration that lets the air to flee inside the pleural space but it does not return.
Answer:
2.17 Mpa
Explanation:
The location of neutral axis from the top will be

Moment of inertia from neutral axis will be given by 
Therefore, moment of inertia will be
![\frac {240\times 25^{3}}{12}+(240\times 25)\times (56.25-25/2)^{2}+2\times [\frac {20\times 150^{3}}{12}+(20\times 150)\times ((25+150/2)-56.25)^{2}]=34.5313\times 10^{6} mm^{4}}](https://tex.z-dn.net/?f=%5Cfrac%20%7B240%5Ctimes%2025%5E%7B3%7D%7D%7B12%7D%2B%28240%5Ctimes%2025%29%5Ctimes%20%2856.25-25%2F2%29%5E%7B2%7D%2B2%5Ctimes%20%5B%5Cfrac%20%7B20%5Ctimes%20150%5E%7B3%7D%7D%7B12%7D%2B%2820%5Ctimes%20150%29%5Ctimes%20%28%2825%2B150%2F2%29-56.25%29%5E%7B2%7D%5D%3D34.5313%5Ctimes%2010%5E%7B6%7D%20mm%5E%7B4%7D%7D)
Bending stress at top= 
Bending stress at bottom=
Mpa
Comparing the two stresses, the maximum stress occurs at the bottom and is 2.17 Mpa