Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
A)
2revs in 0.08s
so in 1s thats 25revs
therefore thats <u>50π radians</u> in one second
b)
well, ω=2π/T
therefore ω=50π = 157.079rads^-1
and v=rω where r is in meters;
v=0.3x157.079
<u>v=47.123ms^-1</u>
c)
f=1/T
f=1/period for one rotation
1 rotation = 0.08/2 = 0.04
f=1/0.04
<u>f=25Hz</u>
1) 2 kilograms converted into grams is 2000
2) 5200 meters converted into kilometers is 5.2
3) 20 centimeters converted into meters is 0.2
Answer:
e=58%
Explanation:
Given data
The Otto-cycle engine in a Mercedes-Benz SLK230 has a compression ratio of 8.8.
Solution
We want to calculate the ideal efficiency of the engine when ratio of heat capacity for gas used γ=1.40. Ideal efficiency (e) of the Otto cycle given by:

Substitute the given values to find efficiency e

e=58%
The temperature of the water and copper beaker be together is 29.6⁰C.
<h3>
What is the equilibrium temperature of both substance?</h3>
The final temperature or equilibrium temperature of the water and copper beaker is calculated by applying the principle of conservation of energy.
Heat lost by the water = Heat gained by the copper beaker
mcΔθ (water) = mcΔθ (copper)
where;
- m is mass
- c is specific heat capacity
- Δθ is change in temperature
m₁c₁(T₁ - T) = m₂c₂(T - T₂)
where;
- T₁ is the initial temperature of water
- T₂ is the initial temperature of copper beaker
- T is the equilibrium temperature
Specific heat capacity of copper, c₂ = 389 J/kgK
Specific heat capacity of water , c₁ = 4200 J/kgK
(2)(4200)(30 - T) = (1)(389)(T - 20)
252,000 - 8400T = 389T - 7780
259,780 = 8789T
T = 259,780 /8789
T = 29.6⁰C
Learn more about equilibrium temperature here: brainly.com/question/8925446
#SPJ1