Answer: a) E= 6.63x10^-19J
E= 3.97×10^2KJ/mol
b) E = 3.31×10^-19J
E= 18.8×10^4 KJ/mol
C) E = 1.32×10^-33J
E= 8.01×10^-10KJ/mol
Explanation:
a) E = h ×f
h= planks constant= 6.626×10^-34
E=(6.626×10^-34)×(1.0×10^15)
E=6.63×10^-19J
1mole =6.02×10^23
E=( 6.63×10^-19)×(6.02×10^23)
E=3.97×10^2KJ/mol
b) E =(6.626×10^-34)/(1.0×10^15)
E=3.13×10^-19J
E= 3.13×10^-19) ×(6.02×10^23)
E= 18.8×10^3KJ/MOL
c) E= (6.626×10^-34) /0.5
E= 1.33×10^-33J
E= (1.33×10^-33) ×(6.02×10^23)
E= 8.01×10^-10KJ/mol
epicycles were orbits within orbits used to explain discrepancies between expected and observed planetary movement, including the appearance of planets slowing down, speeding up, and moving backward.
To solve this problem we will begin by finding the pressure through density and average depth. Later we will find the Force, by means of the relation of the pressure and the area.

Here,
h = Depth average
= Density
Moreover,

Replacing,


Finally the force



<span>(symbol K)</span><span> Energy that an object possesses because it is in motion. It is the energy given to an object to set it in motion; it depends on the mass (</span>m) of the object and its velocity (v<span>), according to the equation K = 1/2 </span>mv2<span>. On impact, it is converted into other forms of energy such as heat, sound and light.</span>
Answer:
np 500000 eeeeeeeeeeee
Explanation:
346 763 999 eeeeeeeeeeeee