Answer:
6.02×10²³
Explanation:
Mole measures the number of particles in a specific substance. The numeric value of a mole for atom or molecules is approximately 6.02×10²³ atoms or molecules.
Answer:
d = 375 m
Explanation:
The speed of sound is constant in any medium, therefore we can use the uniform motion relationships
v = x / t
x = v t
In this case it indicates that the time since the sound is emitted and received is t = 0.50 s, in this time the sound traveled a round trip distance
x = 2d
2d = v t
d = v t/2
let's calculate
d = 1500 0.5 / 2
d = 375 m
I think that the answer is c. good luck
Answer:
yes; yes
Explanation:
Phases of the moon refers to the shapes of the moon due to the lit part of it visible from the Earth. On a new moon day, the moon comes between the sun and the earth such that the lit portion is not visible from the Earth. On a full moon day, the earth comes between the sun and the moon and the whole lit part is visible.
When one would view the earth from the moon, the earth would also be visible as going through the phases. The order would be reversed. Understand this with the following example, On a new moon day, the Earth would be visible completely lit from the moon. So it will be full Earth day on the moon. On a full moon day, the lit side of the Earth would be completely away and hence, from the moon, new earth would be there.
Answer:
Explanation:
Given that,
Two resistor has resistance in the ratio 2:3
Then,
R1 : R2 = 2:3
R1 / R2 =⅔
3 •R1 = 2• R2
Let R2 = R
Then,
R1 = ⅔R2 = 2/3 R
So, if the resistor are connected in series
Let know the current that will flow in the circuit
Series connection will have a equivalent resistance of
Req = R1 + R2
Req = R + ⅔ R = 5/3 R
Req = 5R / 3
Let a voltage V be connect across then, the current that flows can be calculated using ohms law
V = iR
I = V/Req
I = V / (5R /3)
I = 3V / 5R
This the current that flows in the two resistors since the same current flows in series connection
Now, using ohms law again to calculated voltage in each resistor
V= iR
For R1 = ⅔R
V1 =i•R1
V1 = 3V / 5R × 2R / 3
V1 = 3V × 2R / 5R × 3
V1 = 2V / 5
For R2 = R
V2 = i•R2
V2 = 3V / 5R × R
V2 = 3V × R / 5R
V2 = 3V / 5
Then,
Ratio of voltage 1 to voltage 2
V1 : V2 = V1 / V2 = 2V / 5 ÷ 3V / 5
V1 : V2 = 2V / 5 × 5 / 3V.
V1 : V2 =2 / 3
V1:V2 = 2:3
The ratio of their voltages is also 2:3