Answer:
Given the point of maximun electric power of the hair dryer 1500 (w); The circuit breaker won´t trip at all
Explanation:
The most simplyfied relation between power, voltage and current is:
Electric power (in watts) =Voltage (in volts) * current (in ampers)
In the case of P= 1500 (w) and V= 120 (v) we have:
I = 1500/120 (a) = 12,65 (a)
This value is far away of 20 (a) (the nominal trip current
Answer:
(a) Current is 2831.93 A
(b)
(c)
Explanation:
Length of wire l = 3.22 m
Diameter of wire d = 7.32 mm = 0.00732 m
Cross sectional area of wire
Resistance
Potential difference V = 33.7 volt
(A) current is equal to
(B) Current density is equal to
(c) Resistance is equal to
Answer:
A. Both spheres land at the same time.
Explanation:
The horizontal motion doesn't affect the vertical motion. Since the two spheres have the same initial vertical velocity and same initial height, they land at the same time.
<h3>
Answer: 130 newtons</h3>
===============================================================
Explanation:
We'll need the acceleration first.
- The initial speed (let's call that Vi) is 8.0 m/s
- The final speed (Vf) is 0 m/s since Sam comes to a complete stop at the end.
- This happens over a duration of t = 4.0 seconds
The acceleration is equal to the change in speed over change in time
a = acceleration
a = (change in speed)/(change in time)
a = (Vf - Vi)/(4 seconds)
a = (0 - 8.0)/4
a = -8/4
a = -2
The acceleration is -2 m/s^2, meaning that Sam slows down by 2 m/s every second. Negative accelerations are often associated with slowing down. The term "deceleration" can be used here.
Here's a further break down of Sam's speeds at the four points of interest
- At 0 seconds, he's going 8 m/s
- At the 1 second mark, he's slowing down to 8-2 = 6 m/s
- At the 2 second mark, he's now at 6-2 = 4 m/s
- At the 3 second mark, he's at 4-2 = 2 m/s
- Finally, at the 4 second mark, he's at 2-2 = 0 m/s
Next, we'll apply Newton's Second Law of motion
F = m*a
where,
- F = force applied
- m = mass
- a = acceleration
We just found the acceleration, and the mass is fairly easy as all we need to do is add Sam's mass with the sled's mass to get 60+5.0 = 65 kg
So the force applied must be:
F = m*a
F = 65*(-2)
F = -130 newtons
This force is negative to indicate it's pushing against the sled's momentum to slow Sam down.
The magnitude of this force is |F| = |-130| = 130 newtons