Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Answer: ^_^
Explanation:
its because during day time the ball becomes heated up and the air inside it try to come out as the heat air always try to go up swelling up the ball,
so in the evening when the air cools down the ball too cools down and air inside it also cools down making the ball feel soft,
Therefore, a football feels hard on a hot day but feels softer in the evening
Hope it helped u,
pls mark as the brainliest
^_^
Answer: to calculate pH use -log[H+] or - log[OH-]..the solution is basic as the “NaOH” is attached to a hydroxide.Since we need to find the pH (per hydrogen) and not the pOH( per hydroxide) we need to find the pOH of the substance first then we subtract that by 14 so we can arrive at the pH of the substance.
Explanation: So -log( 1 x 10^(-5)) = 5 which is the pOH.Now we subtract that by 14 which gives us -9 and now you’d multiply that by -1 bcuz we can’t have a negative so the pH of the substance is 9