Answer:
Leave onions in cold water for about 15 minutes! Takes out the chemical reaction in the onion's defense system.
Explanation:
This is what people NEED to know for cooking... Lol :)
Answer:
Explanation:
Impulse of a force is measured by force x time or F X t
Impulse also equals change in momentum or
F x t = m v₂ - m v₁
The given case is as follows
in the first case
F x t = mv - o = mv
F = mv / t
in the second case
F₁ x 4 t = mv
F₁ = 1/4 x mv /t
F₁ = F / 4
option a) is correct .
iii )
In the last case
F₂ X t = m v/2 -0
F₂ = 1/2 x mv / t
= 1/2 x F
F₂ = F/2
Option e ) is correct.
Answer:
A. External
Explanation:
External stimulus includes touch/pain, vision, smell, taste, and sound.
The formula is F = ( q1 * q2 ) / r ^ 2
<span>where: q is the individual charges of each ion </span>
<span>r is the distance between the nuclei </span>
<span>The formula is not important but to explain the relationship between the atoms in the compounds and their lattice energy. </span>
<span>From the formula we can first conclude that compounds of ions with greater charges will have a greater lattice energy. This is a direct relationship. </span>
<span>For example, the compounds BaO and SrO, whose ions' charges are ( + 2 ) and ( - 2 ) respectively for each, will have greater lattice energies that the compounds NaF and KCl, whose ions' charges are ( + 1 ) and ( - 1 ) respectively for each. </span>
<span>So Far: ( BaO and SrO ) > ( NaF and KCl ) </span>
<span>The second part required you find the relative distance between the atoms of the compounds. Really, the lattice energy is stronger with smaller atoms, an indirect relationship. </span>
<span>For example, in NaF the ions are smaller than the ions in KCl so it has a greater lattice energy. Because Sr is smaller than Ba, SrO has a greater lattice energy than BaO. </span>
<span>Therefore: </span>
<span>Answer: SrO > BaO > NaF > KCl </span>
So the area under a velocity time graph is distance or displacement, if you have done calculus yet you will understand that if you take the integral of a velocity function then you end up with displacement. Thats for later understanding however.
So this appears to be a right triangle so we can find the area of a triangle as:
0.5bh = A
Since our area is 10 meters lets alter our formula a bit to fit the situation:
Our base here is time and our height is velocity so:
0.5tv = Δx
So we can read off the graph that our velocity at the end, or our final velocity appears to be near 2.0 m/s
So we have v, and Δx so lets isolate for time by dividing by v and 0.5
t = Δx / 0.5v
Now lets plug all that in:
t = 10 / 0.5(2)
t = 10 seconds
Hope this helped!