1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
2 years ago
7

A heavy book is launched horizontally out a window from the first floor, a height, h, above the ground, with initial velocity, v

0, and it hits the ground a horizontal distance X1 away from the window. Another book is similarly launched (same initial velocity) from the second floor window, a height 2h above the ground. Where does the second book land relative to the first book
Physics
1 answer:
Molodets [167]2 years ago
8 0

Answer:

x₂ / x₁ = √2

Explanation:

To solve this exercise we can use the projectile launch ratios, let's find the time it takes for the second book to reach the ground

             y = y₀ + v_{oy} t - ½ g t²

as the book is thrown horizontally v_{oy} = 0, when it reaches the ground its height is zero y= 0

            0 = y₀ - ½ g t²

            t = \sqrt{    \frac{2y_o}{ g} }

            t = \sqrt{    \frac{2 \ 2h}{ g} }

with this time we calculate the horizontal distance traveled

            x = v₀ t

            x₂ = v₀ \sqrt{  \frac{4h}{g} }

now let's calculate the time it takes him to get to the floor when he leaves from the first floor

           t =\sqrt{    \frac{2y_o}{ g} }

the horizontal distance traveled is

           x₁ = v₀ \sqrt{ \frac{2h}{g} }

therefore the difference in distance between the two runs is

           Δx = x₂-x₁

           Δx = v₀ \sqrt{ \frac{4h}{g} } - v₀ \sqrt{ \frac{2h}{g} }

            Δx = v₀ \sqrt{ \frac{2h}{g} }    √2

            Δx =√2    x₁

the relationship between the two distances is

             x₂ / x₁ = √2

You might be interested in
Click on the boxes below to indicate the number of electrons or protons in each labeled position for a zinc atom (z=30, a=65). P
g100num [7]

Answer:

Name: Zinc

Symbol: Zn

Atomic Number: 30

Atomic Mass: 65.39 amu

Melting Point: 419.58 °C (692.73 K, 787.24396 °F)

Boiling Point: 907.0 °C (1180.15 K, 1664.6 °F)

Number of Protons/Electrons: 30

Number of Neutrons: 35

Classification: Transition metal

Crystal Structure: Hexagonal

Density at 293 K: 7.133 g/cm3

Color: bluish

('lil long, sorry)

7 0
2 years ago
Snorkeling by humans and elephants. When a person snorkels, the lungs are connected directly to the atmosphere through the snork
fgiga [73]

Answer:

2354.4 Pa

40221 Pa

Explanation:

\rho = Density = 1000 kg/m³

g = Acceleration due to gravity = 9.81 m/s²

h = Depth

The pressure difference would be

\Delta P=\rho gh\\\Rightarrow \Delta P=1000\times 0.24\times 9.81\\\Rightarrow \Delta P=2354.4\ Pa

The pressure difference in the first case is 2354.4 Pa

\Delta P=\rho gh\\\Rightarrow \Delta P=1000\times 4.1\times 9.81\\\Rightarrow \Delta P=40221\ Pa

The pressure difference in the second case is 40221 Pa

7 0
3 years ago
A point P1 is located by the vector A = (3.74)î + (1.64)ĵ and a point P2 is located by the vector B = (1.60)î + (3.66)ĵ. The vec
seropon [69]

Answer:

\vec{C} = ( \ - 2.14 \ , \ 2.02 \ )

Explanation:

The vector that point from point P1 to point P2 its found simply by taking the vector at which point P2 its located and subtracting the vector at which point P1 its located:

\vec{C} = \vec{B} - \vec{A}

So:

\vec{C} = ( \ 1.60 \ , \ 3.66 \ ) - ( \ 3.74 \ , \ 1.64 \ )

\vec{C} = ( \ 1.60 \ - \ 3.74 \ , \ 3.66 \ - \ 1.64 \ )

\vec{C} = ( \ - 2.14 \ , \ 2.02 \ )

4 0
3 years ago
17-<br> Find the magnitude of vector product \BxĀ| for A=– 23 +3Â and B = 2î – 3+ Å<br> vectors.
aksik [14]

Answer:

alam ko sagot pero mataas

8 0
2 years ago
The platform height for Olympic divers is 10 m. A 60 kg diver steps off the platform to begin his dive.
azamat

Answer:

a) Ep = 5886[J]; b) v = 14[m/s]; c)   W = 5886[J]; d) F = 1763.4[N]

Explanation:

a)

The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.

E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]

b)

Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.

E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]

c)

The work is equal to

W = 5886 [J]

d)

We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.

v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]

By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.

m*g - F = m*a

F = m*a - m*g

F = (60*39.2) - (60*9.81)

F = 1763.4 [N]

3 0
2 years ago
Other questions:
  • What is a stack of membranes that packages chemicals
    9·1 answer
  • A solid 0.7150-kg ball rolls without slipping down a track toward a loop-the-loop of radius r = 0.9150 m. what minimum translati
    13·1 answer
  • How do acids taste?<br><br> A. Sweet<br> B. Soapy<br> C. Bitter<br> D. Sour
    15·2 answers
  • Assume that the force exerted on each crutch by the ground is directed along the crutch, as the force vectors in the drawing ind
    11·1 answer
  • Who discovered the law of universal gravitation?
    12·1 answer
  • How does a rubber rod become negatively charged through friction?
    13·1 answer
  • From the edge of a cliff, a 0.46 kg projectile is launched with an initial kinetic energy of 1430 J. The projectile's maximum up
    15·1 answer
  • An object of mass 5 kilograms is acted upon by the forces F and F2 as shown.
    5·1 answer
  • Which statement is the best interpretation of the ray diagrem shown below
    14·2 answers
  • A 45.0-kg girl stands on a 13.0-kg wagon holding two 18.0-kg weights. She throws the weights horizontally off the back of the wa
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!