Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />
Answer:
C6H12O6 —> 2C2H5OH + 2CO2
Explanation:
The equation for the reaction is given below:
C6H12O6 —> C2H5OH + CO2
We can balance the equation above as follow:
There are 12 atoms of H on the left side and 6 atoms of the right side. It can be balance by putting 2 in front of C2H5OH as shown below:
C6H12O6 —> 2C2H5OH + CO2
There are 6 atoms of C on the left side and 5 atoms on the right side. It can be balance by putting 2 in front of CO2 as shown below:
C6H12O6 —> 2C2H5OH + 2CO2
Now the equation is balanced.
<u>Answer:</u> The atomic mass of these species is different and atomic number remains same.
<u>Explanation:</u>
Isotopes are the chemical species of the same element having different number of neutrons.
- Atomic number is equal to the number of protons or electrons present in that element.
Atomic Number = Number of electrons = Number of protons
- Atomic mass is defined as the sum of number of protons and neutrons contained in an atom.
Atomic Mass = Number of protons + Number of neutrons
For isotopes, as the number of neutrons differ, the atomic mass also differs.
For Example: Carbon has 3 naturally occurring isotopes:
. The atomic number remains the same but atomic mass differs.
Hence, for isotopes, the atomic mass of these species is different and atomic number remains same.
Answer:
carbon dioxide
Explanation:
Carbon burns in oxygen to form carbon dioxide. Since hydrocarbon fuels only contain two elements, we always obtain the same two products when they burn. In the equation below methane (CH 4) is being burned. The oxygen will combine with the carbon and the hydrogen in the methane molecule to produce carbon dioxide (CO 2) and water (H 2O).
Carbon, as graphite, burns to form gaseous carbon (IV) oxide (carbon dioxide), CO2. ... When the air or oxygen supply is restricted, incomplete combustion to carbon monoxide, CO, occurs. 2C(s) + O2(g) → 2CO(g) This reaction is important. When one mole of carbon is exposed to some energy in the presence of one mole of oxygen gas, one mole of carbon dioxide gas is produced. This reaction is a combustion reaction.
<u>Answer:</u>
<u>read below</u>
<u>Explanation:</u>
<u>When the zebra eats grass, it gets energy from the sun that has been stored in the grass. Similarly, the lion obtains energy stored in the zebra. The zebra and lion both obtain the sun's energy indirectly from the energy that the grass obtained through photosynthesis. </u>