We're missing one essential piece of information that we need in order to answer this question. You have not specified <em>what planet</em> the object is falling on. The answer depends on the gravitational acceleration on that planet, and they're all different.
Without that information, we'll just go ahead and assume that the object is falling to the surface of the Earth. Wherever on Earth this tense drama is unfolding, the acceleration of gravity is going to be around <em>9.8 m/s²</em> everywhere.
So THAT's the object's acceleration if there is no air resistance. The object's MASS makes no difference. It doesn't matter whether the object is a sparrow feather or a school bus. Heavier objects DO NOT fall faster than light objects.
If there is no air resistance, then ALL objects fall with the same acceleration. It's called the "acceleration of gravity" on that planet or moon, and you can easily look it up. It's 9.8 m/s² on Earth, 1.62 m/s² on the Moon, 3.71 m/s² on Mars, 8.87 m/s² on Venus, and 24.8 m/s² on Jupiter.
The name of the brightest star is ursae majoris. it is a dwarf star and lie in the constellation of ursa major. that is why it has such similar name. around this star , we have three planets around this star. the distance of this star is around 46 light years. also it's mass is almost same as that of the sun. it rotates with a period of 24 hours
If a tennis player does not swing through, meaning they stop swinging the moment they make contact with the ball, they would lose the majority of their power. <em>The momentum that they had built up during the swing is lost the moment they stop swinging</em>, meaning that the ball is hit with a low amount of power.
<em>If the tennis player swings through the whole time they hit the ball, then they keep their momentum as they hit the ball.</em> There is a much higher power level when swinging through than if you were to stop your swing when you hit the ball.
Answer:
True
Explanation:
The image produced a convex mirror is always virtual irrespective of location. The size of the image is always smaller than the object. In a plane mirror the distance of the object and the distance of the image is same. But in a convex the image distance is always less than the object distance.
So, this statement is true.