Answer:
(a) 42.28°
(b) 37.08°
Explanation:
From the principle of refraction of light, when light wave travels from one medium to another medium, we have:
= sinθ
/sinθ
In the given problem, we are given the refractive indices of light which are parallel and perpendicular to the axis of the optical lens as 1.4864 and 1.6584 respectively.
For critical angle θ
= θ
, θ
= 90°; 
(a) 
= sinθ
/sin90°
0.6728 = sinθ![_{c}θ[tex]_{c} = sin^(-1) 0.6728 = 42.28°(b) [tex]n_{a} = 1.6584](https://tex.z-dn.net/?f=_%7Bc%7D%3C%2Fp%3E%3Cp%3E%CE%B8%5Btex%5D_%7Bc%7D%20%3D%20sin%5E%28-1%29%200.6728%20%3D%2042.28%C2%B0%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%28b%29%20%5Btex%5Dn_%7Ba%7D%20%3D%201.6584)
= sinθ
/sin90°
0.60299 = sinθ[tex]_{c}
θ[tex]_{c} = sin^(-1) 0.60299 = 37.08°
The best answer is D.
Stress is a force that acts on rock to change its shape or volume. Because stress is a force, it adds energy to the rock, which is stored in the rock until either the rock breaks or changes shape.
There are three kinds of stress, namely shearing, tension and compression.
Shearing- force that pushes a mass of rock in two opposite directions and can cause rock to break and slip apart or change shape.
Tension - force that pulls on the crust, stretching rock so that it becomes thinner in the middle.
Compression - force that squeezes rock until it folds or breaks
just listen I am also confused in this question if you get the answer so please just tell me also
When placing each domino upright, potential energy is conserved in that domino. When kinetic energy is initially added into the first domino, this energy converts the next domino's potential energy to kinetic energy, which is transferred to the next domino afterwards.