1)
∠BAC = ∠NAC - ∠NAB = 144 - 68 = 76⁰
AB = 370 m
AC = 510 m
To find BC we can use cosine law.
a² = b² + c² -2bc*cos A
|BC|² = |AC|²+|AB|² - 2|AC|*|AB|*cos(∠BAC)
|BC|² = 510²+370² - 2*510*370*cos(∠76⁰) =
|BC| ≈ 553 m
2)
To find ∠ACB, we are going to use law of sine.
sin(∠BAC)/|BC| = sin(∠ACB)/|AB|
sin(76⁰)/553 m = sin(∠ACB)/370 m
sin(∠ACB)=(370*sin(76⁰))/553 =0.6492
∠ACB = 40.48⁰≈ 40⁰
3)
∠BAC = 76⁰
∠ACB = 40⁰
∠CBA = 180-(76+40) = 64⁰
Bearing C from B =360⁰- 64⁰-(180-68) = 184⁰
4)
Shortest distance from A to BC is height (h) from A to BC.
We know that area of the triangle
A= (1/2)|AB|*|AC|* sin(∠BAC) =(1/2)*370*510*sin(76⁰).
Also, area the same triangle
A= (1/2)|BC|*h = (1/2)*553*h.
So, we can write
(1/2)*370*510*sin(76⁰) =(1/2)*553*h
370*510*sin(76⁰) =553*h
h= 370*510*sin(76⁰) / 553= 331 m
h=331 m
Answer:
52
Step-by-step explanation:
48+8/2
48+4
52
Honestly idk you’ll need a better way to explain this
<span>This is a very nice counting question.
Suggestion / Hint: Count how many ways he can get from (0,0) to (5,7) by going through the point (2,3). Then subtract that from ALL POSSIBLE ways he can get from (0,0) to (5,7).
Hint for the hint: How many ways he can get from (0,0) to (5,7) by going through the point (2,3)? Well, that's the SUM of how many ways he can get from (0,0) to (2,3) and how many ways he get get from (2,3) to (5,7).
Hope this helps! :)</span>