Answer: How to solve for FX and FY?
to find fx(x, y): keeping y constant, take x derivative; • to find fy(x, y): keeping x constant, take y derivative. f(x1,...,xi−1,xi + h, xi+1,...,xn) − f(x) h . ∂y2 (x, y) ≡ ∂ ∂y ( ∂f ∂y ) ≡ (fy)y ≡ f22. similar notation for functions with > 2 variables.
Explanation:
If the ball is made of any magnetic metals (Iron, Nickel, Cobalt) It's 3.
But if it's made of something else without any magnetic force it's 2.
Answer:
- A vibrating object
- a medium to travel
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
<h3>
Answer:</h3>
49500 kgm/s
<h3>
Explanation:</h3>
Data given;
- First car; Mass = 1100 kg
- Velocity = 30 m/s
- Second car; mass = 1100 kg
- Velocity = 15 m/s
We are required to calculate the total momentum of the system.
- We need to know that momentum is calculated by multiplying the velocity of a body by its mass.
- Therefore;
Momentum of the first car = 1100 kg × 30 m/s
= 33,000 kgm/s
Momentum of the second car = 1100 kg × 15 m/s
= 16,500 kgm/s
Therefore;
Total momentum = 33,000 kgm/s + 16,500 kgm/s
= 49500 kgm/s
Thus, the total momentum of the system is 49500 kgm/s