Answer:
Image distance of apple=-6.7 cm
Magnification of apple=0.33
Explanation:
We are given that an apple is placed 20.cm in front of a diverging lens.
Object distance=u=-20 cm
Focal length=f=-10 cm
Because focal length of diverging lens is negative.
We have to find the image distance and magnification of the apple.
Lens formula

Substitute the values then we get




Image distance of apple=-6.7 cm
Magnification=m=
Magnification of apple=
Hence, the magnification of apple=0.33
Answer:
Re=160ohm
Explanation:
Step#1
Rt=R1+R2 ( because both are in series)
Rt=(100+220 ) ohm
Rt=320 ohm
Step#2
Rt and R3 are parallel so,
Re= (Rt× R3) ÷ (Rt+R3)
Re= (320×320)÷( 320+320)
Re = 102,400÷ 640
Re=160ohm
Unfortunately, the given statements are missing from the problem. However, we can still determine the relationship between the electric force between two objects and the distance between them. The formula for the electric force is given below:
F = (k*Q1*Q2)/d^2
k is a constant, while Q1 and Q2 are the respective charges of the objects. F is force, while d is distance.
As seen in the formula, we can see that the electric force F is inversely proportional to the square of the distance between the two objects.
Answer: a = 4 m/s²
Explanation:
a = Δv/t = (30 - 18) / 3 = 4 m/s²