The solution before dilution and after dilution contains same number of moles, and water is added for dilution.
Option B
<h3><u>Explanation:</u></h3>
Suppose before dilution, the solution contains x moles of KCl in Y liter of water. Now as the concentration got halved, then the solution contains x moles of KCl in 2Y kiters of solution. So the number of moles of KCl in the solution remained constant.
Again, as the solution is diluted to half of the concentration, water must have been added with the solution to make it dilute.
57.0 is it rounded to three sig figs. You count three spaces then round from there, which would be the zero and you would round down because the four is there.
Answer:
The structures shown by dots and lines to give the exact number of electrons in the outer most shell is explained by Lewis Structures.
Explanation:
Lewis structures are those structures in which the diagram is shown using the electron representation. They are easy to understand as the diagram completely depicts where the electrons are shared and where they are transferred. The diagram also explains where there is a single bond and where there is a di covalent bond or tri covalent bond explaining where the single , double or triple electron pair is shared. The electrons are shown by dots or lines.
For example CCl₄ can be shown as follows
..
.. Cl..
.. ..
..Cl..----------C----------..Cl..
..
.. Cl..
The picture shows that each chlorine has six electrons in its outer shell and then a pair of electron is shared with carbon forming a single covalent bond.
Similarly methane CH4 can also be shown.
The hydrogen has one electron and it shares an electron from carbon stabilising itself forming methane.
COVALENT BOND IS THE BOND EXISTING BETWEEN 2 ATOMS THAT SHARE 6 ELECTRONS
Answer: In photosynthesis, producers combine carbon dioxide, water, and sunlight to produce oxygen and sugar (their food). Other organisms get energy by eating producers. ... It cannot directly use the Sun's energy to make food. As a consumer, it has to eat— or, consume— other organisms for energy.
Explanation: Thats how both producers and consumers get energy