Answer:
- Total Pressure = 1.019 atm
Explanation:
To solve this problem we use PV=nRT for both gases in their containers, in order to <u>calculate the moles of each one</u>:
645 Torr ⇒ 645 /760 = 0.85 atm
25°C ⇒ 25 + 273.16 = 298.16 K
0.85 atm * 1.40 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
n = 0.0487 mol O₂
1.13 atm * 0.751 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
n = 0.0347 mol N₂
Now we can <u>calculate the partial pressure for each gas in the new container</u>, because the number of moles did not change:
P(O₂) * 2.00 L = 0.0487 mol O₂ * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
P(O₂) = 0.595 atm
P(N₂) * 2.00 L = 0.0347 mol N₂ * 0.082 atm·L·mol⁻¹·K⁻¹ *298.16 K
P(N₂) = 0.424 atm
Finally we add the partial pressures of all gases to <u>calculate the total pressure</u>:
- Pt = 0.595 atm+ 0.424 atm = 1.019 atm
Answer: the bottom one is wave the one above is electromagnetic and the one above is transverse
Explanation:
Answer:
d) A - 70% B - 30%
Explanation:
If x is the abundance of A, and 1−x is the abundance of B, then:
x (32.0) + (1−x) (33.0) = 32.3
32x + 33 − 33x = 32.3
33 − x = 32.3
x = 0.7
The abundance of A is 70%, and the abundance of B is 30%.