The question is incomplete. The complete question is :
Hydrogen is manufactured on an industrial scale by this sequence of reactions:


The net reaction is :

Write an equation that gives the overall equilibrium constant
in terms of the equilibrium constants
and
. If you need to include any physical constants, be sure you use their standard symbols, which you'll find in the ALEKS Calculator.
Solution :

...............(1)

...................(2)

![$K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}$](https://tex.z-dn.net/?f=%24K%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%5E4%7D%7B%5BCH_4%5D%5BH_2O%5D%5E2%7D%24)
On multiplication of equation (1) and (2), we get
![$K_1 \times K_2=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \times \frac{[CO_2][H_2]}{[CO][H_2O]}$](https://tex.z-dn.net/?f=%24K_1%20%5Ctimes%20K_2%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5Ctimes%20%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%24)
.................(4)
Comparing equation (3) and equation (4), we get

Answer:
Explanation:
1. Density from mass and volume

2. Volume from density and mass

3. Mass from density and volume

4. Density by displacement
Volume of water + object = 24.6 mL
Volume of water =<u> 12.8 mL</u>
Volume of object = 11.8 mL

Your drawing showing water displacement using a graduated cylinder should resemble the figure below.
Cl₂O + H₂O ⇄ 2HClO
K = [HClO]²/[Cl₂O][H₂O]
K = (0,023)²/(0,077×0,077)
K = 0,000529/0,005929
<u>K</u><span><u> </u></span><u>≈</u><span><u> </u></span><u>0,0892
</u>:)