Answer:
Explanation:
From the given information:
Camphor may be reduced as readily in the presence of sodium borohydride(NaHB4). The resulting compound which is stereoselective requires 1 mole of sodium borohydride (NaHB4) to reduce 1 mole of camphor in this reaction. The reaction is shown below.
Through the reduction process of camphor, the reducing agent can reach the carbonyl face with a one-carbon linkage. The product stereoisomer is known as borneol.
If the molecular weight of camphor = 152.24 g/mol
and it mass = 200 mg
The its no of moles = 200 mg/ 152.24 g/mol
= 1.3137 mmol
Now the amount of the required mmol for NaBH4 to be consumed in the reaction = 5.2 × 1.3137 mmol
= 6.831 mmol
since the molar mass of NaBH4 = 37.83 g/mol
Then, using the same formula:
No of moles = mass/molar mass
mass = No of moles × molar mass
mass = 6.831 mmol × 37.83 g/mol
mass of NaBH4 used = 258.42 mg
Answer:
In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond.
Explanation:
(copied from Google)
THE ALTERNATIVE IS 4.8g alternative c
<span>The amount of dissolved salt in the liquid sample is measured and reported as salinity. The salinity is usually measured in parts per thousand (ppt). The salinity of ocean averages 35 ppt while that of the river averages 0.5 ppt or less. In other terms, the word salinity is the saltiness. </span>