The star with apparent magnitude 2 is more brighter than 7.
To find the answer, we have to know about apparent magnitude.
<h3>What is apparent magnitude?</h3>
- 100 times as luminous as a star with an apparent brightness of 7 is a star with a magnitude of 2.
- The apparent magnitude of bigger stars is always smaller.
- The brightest star in the night sky is Sirius.
- The brightness of a star or other celestial object perceived from Earth is measured in apparent magnitude (m).
- The apparent magnitude of an object is determined by its inherent luminosity, its distance from Earth, and any light extinction brought on by interstellar dust in the path of the observer's line of sight.
Thus, we can conclude that, the star with apparent magnitude 2 is more brighter than 7.
Learn more about the apparent magnitude here:
brainly.com/question/350008
#SPJ4
Answer:
Explanation: Decreasing in velocity
Answer:
During those 3.00 seconds before stopping, the car travels a distance of 6 m.
Explanation:
The simple rule of three is a tool that is used to quickly solve problems, where three pieces of information must be known, and one of them operates as an unknown to be known.
Two magnitudes are directly proportional if one magnitude increases the other also does it, and if the magnitude decreases the other in the same way.
Being a, b and c known data and x the unknown, the value that we want to know, the rule of three when the magnitudes are directly proportional is applied as follows:
a ⇒ b
c ⇒ x
So: 
In this case, knowing that a truck travels at 2 m/s, the rule of three applies as follows: if in 1 second the truck travels 2 m, in 3 seconds how much distance does it travel?

distance= 6 m
<u><em>
During those 3.00 seconds before stopping, the car travels a distance of 6 m.</em></u>
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.