Answer:
=24.25 ^−1
Explanation:
Let and be initial and final velocity of the body respectively,
be acceleration due to gravity ( 9.8^−2 ), ℎ be the height of the body.
=0 ^ −1
ℎ=30
we know that, ^2−^ 2=2ℎ
^2=2∗9.8∗30
^2=588
=24.25 ^−1
Answer:
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Comment has been deleted
Read more on Brainly.com - brainly.com/question/14295948#readmore
Explanation:
Answer: A
Hope this help you!!
B verifying is the answer
Answer:
= 14.88 N
Explanation:
Let's begin by listing out the given variables:
M = 2.7 kg, L = 3 m, m = 1.35 kg, d = 0.6 m,
g = 9.8 m/s²
At equilibrium, the sum of all external torque acting on an object equals zero
τ(net) = 0
Taking moment about
we have:
(M + m) g * 0.5L -
(L - d) = 0
⇒
= [(M + m) g * 0.5L] ÷ (L - d)
= [(2.7 + 1.35) * 9.8 * 0.5(3)] ÷ (3 - 0.6)
= 59.535 ÷ 2.4
= 24.80625 N ≈ 24.81 N
Weight of bar(W) = M * g = 2.7 * 9.8 = 26.46 N
Weight of monkey(w) = m * g = 1.35 * 9.8 = 13.23 N
Using sum of equilibrium in the vertical direction, we have:
+
= W + w ------- Eqn 1
Substituting T2, W & w into the Eqn 1
+ 24.81 = 26.46 + 13.23
= <u>14.88</u> N