The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
Answer:
74.86°C
Explanation:
P₂ = Vapour pressure of water at sea level = 760 mmHg
P₁ = Pressure at base camp = 296 mmHg
T₂ = Temperature of water = 373 K
ΔH°vap for H2O = 40.7 kJ/mol = 40700 J/mol
R = Gas constant = 8.314 J/mol K
From Claussius Clapeyron equation

T₁ = 347.996 K = 74.86°C
∴Water will boil at 74.86°C
Answer:
The balanced equation is 3NaBr+1H3PO4 ----> 1Na3PO4 + 3HBr
This is a double replacement because you are switching both the Na and the Hydrogen.
Explanation:
Answer:
The force on the ball is the same