B. Reversing the current direction will cause the force deflecting the
wire to be perpendicular to the magnetic field but in the opposite
direction.
Answer:
the number of turns in the primary coil is 13000
Explanation:
Given the data in the question;
V₁ = 13000 V
V₂ = 120 V
N₁ = ?
N₂ = 120 turns
the relation between the voltages and the number of turns in the primary and secondary coils can be expressed as;
V₁/V₂ = N₁/N₂
V₁N₂ = V₂N₁
N₁ = V₁N₂ / V₂
so we substitute
N₁ = (13000 V × 120 turns) / 120 V
N₁ = 1560000 V-turns / 120 V
N₁ = 13000 turns
Therefore, the number of turns in the primary coil is 13000
Explanation:
It is given that,
Mass of an object, 
(a) Time period of oscillation, T = 2.4 s
The formula for the time period of spring is given by :

Where
k is the force constant



(b) Displacement in the spring, x = 2.2 m
Energy stored in the spring is given by :



Hence, this is the required solution.
Answer:
VL=2107.6v
Explanation:
at resonance xc=xL
1/wc = wL
z=R
because sqr(R^2+(xL-xc))
^
(xL=xc)
V/R=I
90/28.9=3.1142A
w=1/sqr(1.31×(2.86×10^-6))=516.63
xL= wL
xL= 516.63×1.31=676.785
VL=3.1142×676.785
VL=2107.6v
We need to find the average speed of the ball during the motion of 1 m
In order to find that we took several reading and found following times to cover the distance of 1 m
t1 = 2.26 s
t2 = 2.38 s
t3 = 3.02 s
t4 = 2.26 s
t5 = 2.31 s
Now in order to find the average time we can write



So average time to cover the distance of 1 m by ball will be 2.45 s
here 3.02 s is not the average time but we can say it is the median of the readings of all possible values which we can not use in our calculation as average time