Answer:

Explanation:
MA ( Mechanical Advantage ) is always less than VR ( Velocity Ratio ) because <u>MA</u><u> </u><u>is</u><u> </u><u>reduced</u><u> </u><u>by</u><u> </u><u>friction</u><u> </u><u>but</u><u> </u><u>VR</u><u> </u><u>is</u><u> </u><u>not</u><u> </u><u>affected</u><u> </u><u>by</u><u> </u><u>friction</u><u>.</u>
Hope I helped!
Best regards! :D
C2H5OH (l) + 3 O2 (g) = 2 CO2 (g)+ 3 H2O (l/g)
To prepare a 10.0% w/v solution of salt in water in a 100 mL volumetric flask, first you must weigh 10 g of salt because the 10 % 100 is 10 and the given should be 10 % w/v. place the 10 g salt to the volumetric flask then add water up until to mark of the volumetric flask then shake it.
Answer:
The linear charge density is 5.19 X 10⁻⁶ C/m
Explanation:
The potential difference between two cylinders, is given as
V = (λ/2πε)ln(b/a)
where;
λ is the line charge density on the power line.
b is the distance between the power line = 1 m
a is the radius of the wire = 1.5 cm = 0.015 m
ε is the permittivity of free space = 8.9 X 10⁻¹² C
V*2πε = λ* ln(b/a)
3900 *(2π*8.9 x10⁻¹²)= λ *ln(1/0.015)
2.1812 X 10⁻⁷ = 4.1997* λ
λ = 5.19 X 10⁻⁶ C/m
Therefore, the linear charge density is 5.19 X 10⁻⁶ C/m
It gets larger since the heat is expanding it outward