Answer:
The eruption of Mount Tambora eventually reduced the average global temperature by as much as 3 °C.
Explanation:
The Mount Tambora eruption was the largest and most destructive volcanic event in recorded history, expelling as much as 150 cubic km (roughly 36 cubic miles) of ash, pumice, and other rock, and aerosols—including an estimated 60 megatons of sulfur—into the atmosphere. As that material mixed with atmospheric gases, it prevented substantial amounts of sunlight from reaching Earth’s surface, eventually reducing the average global temperature by as much as 3 °C.
Answer:
I think that this would be an example of erosion
Answer:
Ok to solve this you will need to use the Ideal Gas Law Formula which is as follows:
PV = nRT
P= pressure
V= volume
n= # of moles
R= Universal Gas Constant (0.0821 L x atm/mol x K)
T= Kelvin temperature
1.Simplify the Ideal Gas Law formula to what you need to solve for:
P = (nRT)/ V
2. List all you components as follows (this makes the process easier):
P = ?
V = 45.4 L
n = 0.625 mol
R = 0.0821 L x atm/ mol x K
T = 249 K
To find the Kelvin temperature K = C + 273
3. Plug in all your components in your set up formula:
P = [(0.625 mol)(0.0821 L x atm/ mol x K)(249 K)] / (45.4 L)
4. Cross out all similar units so the only thing left is atm because you are trying to find pressure.
P = [(0.625)(0.0821atm)(249)] / (45.4)
5. Multiply through and simplify
P = 0.28 atm
B. is the correct answer.
Glad I could help!! If you have any other questions just message me. Hopefully this was helpful.
Explanation:
The limiting reagent is <u>H₂SO₄</u>
<u><em>calculation</em></u>
<u><em> </em></u>Step 1 :write the equation for reaction
2 NaOH + H₂SO₄ → Na₂SO₄ + 2 H₂O
Step 2: use the mole ratio to determine the moles of product produced from each reactant
that is from equation above,
NaOH : Na₂SO₄ is 2 :1 therefore the moles of Na₂So₄
= 10.0 moles x 1/2 = 5.0 moles
H₂SO₄ :Na₂SO₄ is 1:1 therefore the moles of Na₂SO₄ is also = 3.50 moles
H₂SO₄ is the limiting reagent since it produces less amount of Na₂SO₄