1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
5

You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 12-m-hi

gh hill, then descends 18 m to the track's lowest point. You've determined that the spring can be compressed a maximum of 2.3 m and that a loaded car will have a maximum mass of 430 kg . For safety reasons, the spring constant should be 13 % larger than the minimum needed for the car to just make it over the top.
a) what spring constant (k) should you specify ?b) What is the maximum speed of a 350 kg car if the spring iscompressed the full amount.

Physics
1 answer:
Vlada [557]3 years ago
5 0

Answer:

Vmax=11.53 m/s

Explanation:

from conservation of energy

      E_A} =E_{B}

     Spring potential energy =potential energy due to elevation

   0.5*k*x²= mg(h_{B}-h_{A} )=mgh

   0.5*k*2.3²= 430*9.81*6

         k=9568.92 N/m

For safety reason

                                 k"=1.13 *k= 1.13*9568.92

                                    k"=10812.88 N/m

agsin from conservation of energy

      E_A} =E_{C}

    spring potential energy=change in kinetic energy

   0.5*k"*x²=0.5*m*V_{max}^{2}

      10812.88 *2.3²=430*V_{max}^{2}

           V_{max}=11.53 m/s

You might be interested in
If the number of particles is increased in a balloon what happens to the pressure inside of it?
Klio2033 [76]
The air pressure inside the balloon increases as the number of particles increases.
8 0
3 years ago
A harmonic wave on a string with a mass per unit length of 0.050 kg/m and a tension of 60 N has an amplitude of 5.0 cm. Each sec
Dennis_Churaev [7]

Answer:

Power of the string wave will be equal to 5.464 watt

Explanation:

We have given mass per unit length is 0.050 kg/m

Tension in the string T = 60 N

Amplitude of the wave A = 5 cm = 0.05 m

Frequency f = 8 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 8=50.24rad/sec

Velocity of the string wave is equal to v=\sqrt{\frac{T}{\mu }}=\sqrt{\frac{60}{0.050}}=34.641m/sec

Power of wave propagation is equal to P=\frac{1}{2}\mu \omega ^2vA^2=\frac{1}{2}\times 0.050\times 50.24^2\times 34.641\times 0.05^2=5.464watt

So power of the wave will be equal to 5.464 watt

6 0
2 years ago
Which type of wave has a longer wavelength: AM radio waves (with frequencies in the kilohertz range) or FM radio waves (with fre
faltersainse [42]

Answer:

AM has longer wavelength

Explanation:

The relation between the wavelength and teh frequency is given by

v = f x λ

Where, f is the frequency and λ be the wavelength.

It shows that the wavelength is inversely proportional to the frequency.

So, higher the frequency, smaller be the wavelength.

So, FM has high frequency than AM, thus, FM has lower wavelength as compared to AM.

6 0
3 years ago
A pen rolls off a 0.55–meter high table with an initial horizontal velocity of 1.2 meters/second. At what horizontal distance fr
NARA [144]
To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.

Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds

Horizontal distance
=0.335s*1.2m/s
=0.402 meters
8 0
3 years ago
To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V
aleksley [76]

Answer:

The maximum energy stored in the combination is 0.0466Joules

Explanation:

The question is incomplete. Here is the complete question.

Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.

Energy stored in a capacitor is expressed as E = 1/2CtV² where

Ct is the total effective capacitance

V is the supply voltage

Since the capacitors are connected in series.

1/Ct = 1/C1+1/C2+1/C3

Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF

1/Ct = 1/11.7 + 1/21.0 + 1/28.8

1/Ct = 0.0855+0.0476+0.0347

1/Ct = 0.1678

Ct = 1/0.1678

Ct = 5.96μF

Ct = 5.96×10^-6F

Since V = 125V

E = 1/2(5.96×10^-6)(125)²

E = 0.0466Joules

8 0
2 years ago
Other questions:
  • Steam is accelerated by a nozzle steadily from zero velocity to a velocity of 280 m/s at a rate of 2.5 kg/s. If the temperature
    8·1 answer
  • While punting a football, a kicker rotates his leg about the hip joint. the moment of inertia of the leg is 3.75 kg m2 and its r
    13·2 answers
  • a motivated approach to dream interpretation claims that most dreamers will interpret their dreams _____.
    14·1 answer
  • If you see Sagittarius high in your night sky on June 20 and today is your birthday, what is your zodiac constellation?
    13·1 answer
  • What two characteristics do electromagnetic waves vary in?
    13·2 answers
  • Match each example with the appropriate stage of technological design. drag each arrow to its correct match.
    13·1 answer
  • A swimmer can swim at a velocity v in still water. She swims upstream a distance d against the current, which has a velocity u.
    10·1 answer
  • Relate temperature to the average kinetic<br> energy in a material.
    15·1 answer
  • A parallel-plate vacuum capacitor has 7.72 J of energy stored in it. The separation between the plates is 3.30 mm. If the separa
    11·1 answer
  • What are the conditions of equilibrum
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!