1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
15

Three different planet-star systems, which are far apart from one another, are shown above. The masses of the planets are much l

ess than the masses of the stars.
In System A , Planet A of mass Mp orbits Star A of mass Ms in a circular orbit of radius R .

In System B , Planet B of mass 4Mp orbits Star B of mass Ms in a circular orbit of radius R .

In System C , Planet C of mass Mp orbits Star C of mass 4Ms in a circular orbit of radius R .
(a) The gravitational force exerted on Planet A by Star A has a magnitude of F0 . Determine the magnitudes of the gravitational forces exerted in System B and System C .

___ Magnitude of gravitational force exerted on Planet B by Star B

___ Magnitude of gravitational force exerted on Planet C by Star C
(b) How do the tangential speeds of planets B and C compare to that of Planet A ? In a clear, coherent paragraph-length response that may also contain equations and/or drawings, provide claims about

why the tangential speed of Planet B is either greater than, less than, or the same as that of Planet A , and
why the tangential speed of Planet C is either greater than, less than, or the same as that of Planet A .
Physics
1 answer:
alex41 [277]3 years ago
3 0

a) 4F0

b) Speed of planet B is the same as speed of planet A

Speed of planet C is twice the speed of planet A

Explanation:

a)

The magnitude of the gravitational force between two objects is given by the formula

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m1, m2 are the masses of the 2 objects

r is the separation between the objects

For the system planet A - Star A, we have:

m_1=M_p\\m_2 = M_s\\r=R

So the force is

F_A=G\frac{M_p M_s}{R^2}=F_0

For the system planet B - Star B, we have:

m_1 = 4 M_p\\m_2 = M_s\\r=R

So the force is

F=G\frac{4M_p M_s}{R^2}=4F_0

So, the magnitude of the gravitational force exerted on planet B by star B is 4F0.

For the system planet C - Star C, we have:

m_1 = M_p\\m_2 = 4M_s\\r=R

So the force is

F=G\frac{M_p (4M_s)}{R^2}=4F_0

So, the magnitude of the gravitational force exerted on planet C by star C is 4F0.

b)

The gravitational force on the planet orbiting around the star is equal to the centripetal force, therefore we can write:

G\frac{mM}{r^2}=m\frac{v^2}{r}

where

m is the mass of the planet

M is the mass of the star

v is the tangential speed

We can re-arrange the equation solving for v, and we find an expression for the speed:

v=\sqrt{\frac{GM}{r}}

For System A,

M=M_s\\r=R

So the tangential speed is

v_A=\sqrt{\frac{GM_s}{R}}

For system B,

M=M_s\\r=R

So the tangential speed is

v_B=\sqrt{\frac{GM_s}{R}}=v_A

So, the speed of planet B is the same as planet A.

For system C,

M=4M_s\\r=R

So the tangential speed is

v_C=\sqrt{\frac{G(4M_s)}{R}}=2(\sqrt{\frac{GM_s}{R}})=2v_A

So, the speed of planet C is twice the speed of planet A.

You might be interested in
Which is the most common direction of motion in the solar system, both for orbital revolution and axial rotation?.
OLEGan [10]

Answer:

Clockwise

Explanation:

All of the planets rotate the same way around the sun.

6 0
2 years ago
4: A piece of fur is negatively charged when:
MatroZZZ [7]

Answer:

the fur is unexpected

Explanation:

idk

5 0
3 years ago
A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
myrzilka [38]

Answer:

a. The plane speeds up but the cargo does not change speed.

Explanation:

Just to make it clear, the question is as follows from what I understand.

A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.  You can neglect air resistance.

Just after the cargo has fallen out:

a. The plane speeds up but the cargo does not change speed.

b. The cargo slows down but the plane does not change speed.

c. Neither the cargo nor the plane change speed.

d. The plane speeds up and the cargo slows down.

e. Both the cargo and the plane speed up.

And we are requested to choose the right answer under the given conditions. We know the glider has no motor, then it must be in free fall movement, then it is experiencing some force that pulls it to the from due to the gravity effect on it, and a force in general is calculated by

F=m*a, m:= mass of the object, a:= acceleration.

Here we are only considering the horizontal effect of the forces, then since the mass is reduced the acceleration must increase to compensate and maintain  the equilibrium of the forces, then the glider being lighter can travel faster due to the acceleration. On the other hand by the time the cargo left the glider there was no acceleration and the speed it had at the moment he left the plane continues, then the cargo does not change its speed, then horizontally speaking the answer would be a. The plane speeds up but the cargo does not change speed.

5 0
3 years ago
While traveling along a highway a driver slows from 24 m/sec to 15 m/sec in 12 seconds. What is the
Vladimir [108]
24-15=9 m/s slower in 12 seconds. So 9/12 m/s² slower. Therefore the acceleration is -0,75 m/s²
4 0
3 years ago
A total resistance of 3.03 Ω is to be produced by connecting an unknown resistance to a 12.18 Ω resistance. (a) What must be the
insens350 [35]

Answer:

(a) 4.0334Ω

(b)parallel

Explanation:

for resistors connected in parallel;

\frac{1}{R_{eq} } =\frac{1}{R1}+\frac{1}{R2}

Req =3.03Ω , R1 =12.18Ω

\frac{1}{3.03 } =\frac{1}{12.18}+\frac{1}{R2}

\frac{1}{R2}=\frac{1}{3.03 }-\frac{1}{12.18}

\frac{1}{R2}=0.2479

R2=1/0.2479

R2=4.0334Ω

(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.

Req = R1+R2

3 0
3 years ago
Other questions:
  • A farmer conducts an experiment to determine whether or not feeding his milk cows an organic diet affects the taste of the cow's
    12·2 answers
  • Is compound a subatomic particle
    7·1 answer
  • The amount of water displaced, in water displacement method depends on the *
    6·1 answer
  • Which of the following is an example of mechanical waves in nature?
    8·1 answer
  • Answer plz<br>and<br>follow me​ <br>​
    12·2 answers
  • What amount of force is needed to propel and object of 27 kg to an acceleration of 11,550 m/s^2?
    7·1 answer
  • The diagram shows changes of state between solid, liquid, and gas. The atoms of a substance lose energy during a change of state
    7·2 answers
  • Number of atoms of each element ammonium hydroxide?​
    5·2 answers
  • HELP PLS
    14·1 answer
  • A spring oscillates with a period of<br> 0.228 S. What is its frequency?<br> (Unit = Hz)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!