Answer:
_5_ AsO2−(aq) + 3 Mn2+(aq) + _2_ H2O(l) → _5_ As(s) + _3_ MnO4−(aq) + _4_ H+(aq)
Explanation:
Step 1:
The unbalanced equation:
AsO2−(aq) + 3 Mn2+(aq) + H2O(l) → As(s) + MnO4−(aq) + H+(aq)
Step 2:
Balancing the equation.
AsO2−(aq) + 3Mn2+(aq) + H2O(l) → As(s) + MnO4−(aq) + H+(aq)
The above equation can be balanced as follow:
There are 3 atoms of Mn on the left side of the equation and 1 atom on the right side. It can be balance by putting 3 in front of MnO4− as shown below:
AsO2−(aq) + 3Mn2+(aq) + H2O(l) → As(s) + 3MnO4−(aq) + H+(aq)
There are 12 atoms of O on the right side and a total of 3 atoms on the left side. It can be balance by putting 5 in front of AsO2− and 2 in front of H2O as shown below:
5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → As(s) + 3MnO4−(aq) + H+(aq)
There are 4 atoms of H on the left side and 1 atom on the right side. It can be balance by putting 4 in front of H+ as shown below:
5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → As(s) + 3MnO4−(aq) + 4H+(aq)
There are 5 atoms of As on the left side and 1 atom on the right side. It can be balance by putting 5 in front of As as shown below:
5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → 5As(s) + 3MnO4−(aq) + 4H+(aq)
Now the equation is balanced
Number 4 is
-Oxidation occurs at the anode, while reduction occurs at the cathode. Recharging a battery involves the conversion of electrical energy to chemical energy. During recharging, there is movement of electrons from an external power source to the anode, and on the other side electrons are removed from the cathode.
Answer:
<h3>option D</h3>
Explanation:
<h3>Is wire A connected to the light bulb </h3>
<h3>because it is series connection</h3>
Answer:
0.00370 g
Explanation:
From the given information:
To determine the amount of acid remaining using the formula:
where;
v_1 = volume of organic solvent = 20-mL
n = numbers of extractions = 4
v_2 = actual volume of water = 100-mL
k_d = distribution coefficient = 10
∴




Thus, the final amount of acid left in the water = 0.012345 * 0.30
= 0.00370 g