Check the power source. Your thermostat may just not be connected right or at all. A blown fuse, tripped circuit breaker or dead batteries will prevent the thermostat from turning on your furnace.
Dirty thermostat? That’ll cause issues. Clean up any dust, dirt, spider webs and other debris. Any of these things can coat the inside of the thermostat and interfere with both electrical and mechanical functions of the thermostat. Put this on your get-ready-for-winter cleaning list. Just use a soft, clean brush to clean the inside components gently. Don’t get anything wet. Also you can use a can of compressed air, such as is used for electronics, to clear debris.
Check for any loose wires or terminal screws inside the thermostat. Make sure wires aren’t corroded or detached. Never remove the thermostat cover without removing the batteries or turning off the power at the fuse or breaker box. Tighten screws and secure loose wires if needed.
It may be time to replace your thermostat is it’s old. They aren’t meant to last forever and an old thermostat may be costing you a lot of money in wasted energy and time spent tinkering with an outdated model. There are great programmable thermostats available now that are easy to use and simple to connect to your existing HVAC system. Click here for more info on programmable thermostats.
Answer:
D. If a home were wired in series, every light and appliance would have to be turned on in order for any light or appliance to work.
Explanation:
In a series circuit, all the appliances are connected on the same branch of the circuit, one after the other. This means that the current flowing throught them is the same. However, this means also that if one of the appliance is turned off (so, its switch is open), that appliance breaks the circuit, so the current can no longer flow through the other appliances either.
On the contrary, when the appliances are connected in parallel, they are connected in different branches, so if one of them is switched off, the other branches continue working unaffacted by it.
Answer:
1. Fleming's left hand rule
2. It must be projected towards the east
Explanation:
Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.
Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.
Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.
Answer:
Risk rejection
Explanation:
There are several factors that contribute to the degree of driving risks and they include but not limited to the ability of the driver and the condition of a vehicle. Other factors are condition of the environment and the condition of the highway. When driving, a driver may wait until an oncoming vehicle passes before making a complete left turn as a risk rejection strategy. Left turns are more dangerous when making them because drivers tend to accelerate on to a left turn. The wider radius of a left turn is know to led to higher speeds and greater pedestrian exposure. A driver is advised to have more mental and physical efforts when making a left turn.