Q3. (a) 0m/s, as they are asking for initial velocit.
(b)(i) The paper has a large surface area or weighs less than the coin,thus,falls smoothly.
(ii)The coin has more mass than the paper.
(c) They fall at the same acceleration and hit the bottom at the same time.
Their mass doesn't matter in the vacuum.
I believe your answer is TRUE!
Hope this helps!:)
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
F-free = m*g - F_air = m*a
F_air = 1.2 * m
a= (105 kg * 9.8 m.s^2 - 5*105) / 105 kg
a = 9.3 m/s
Hope this helps
D.) White Dwarf
It is the smallest star whose mass is approximately equal or greater than 1.4M
Here, M = mass of the Sun.
Hope this helps!