1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
14

1. A uniform magnetic field is directed vertically upwards. In which direction in this field should an alpha particle be project

ed so that it is deflected south ward? Name and state the rule you have used to find the direction in this case.
Physics
1 answer:
max2010maxim [7]3 years ago
3 0

Answer:

1. Fleming's left hand rule

2. It must be projected towards the east

Explanation:

Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.

Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.

Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.

You might be interested in
Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
max2010maxim [7]

Answer:

2.5 m/s

Explanation:

Mechanical energy is the sum of the potential and kinetic energy.

E = PE + KE

E = mgh + ½mv²

172.1 J = (7.26 kg) (9.8 m/s²) (2.1 m) + ½ (7.26 kg) v²

v = 2.5 m/s

7 0
3 years ago
Read 2 more answers
A lad, waiting for his friend walks in the sidewalk, in front of her house, from the front door, first, he moves towards the Pos
Andreas93 [3]

His total displacement from his original position is -1 m

We know that total displacement of an object from a position x to a position x', d = final position - initial position.

d = x' - x

If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.

Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.

His final position, x" after moving back 6 m is gotten from

x" - x' = -6 m

x" = -6 + x'

x" = -6 + 5

x" = -1 m

Thus, his total displacement from his original position is

d = final position - initial position

d = x" - x

d = -1 m - 0 m

d = -1 m

So, his total displacement from his original position is -1 m

Learn more about displacement here:

brainly.com/question/17587058

3 0
3 years ago
A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound
NemiM [27]

Answer:

f3 = 102 Hz

Explanation:

To find the frequency of the sound produced by the pipe you use the following formula:

f_n=\frac{nv_s}{4L}

n: number of the harmonic = 3

vs: speed of sound = 340 m/s

L: length of the pipe = 2.5 m

You replace the values of n, L and vs in order to calculate the frequency:

f_{3}=\frac{(3)(340m/s)}{4(2.5m)}=102\ Hz

hence, the frequency of the third overtone is 102 Hz

8 0
3 years ago
What solutes do not dissolve well in water?
hammer [34]

Answer:

Many substances do not dissolve in water and that is because they are non-polar and do not interact well with water molecules. A common example is oil and water. Oil contains molecules that are non-polar, thus they do not dissolve in water.

Explanation:

6 0
3 years ago
Read 2 more answers
→Fo
irakobra [83]

Answer:

The mass of the block, M =T/(3a +g)  Kg

Explanation:

Given,

The upward acceleration of the block a = 3a

The constant force acting on the block, F₀ = Ma = 3Ma

The mass of the block, M = ?

In an Atwood's machine, the upward force of the block is given by the relation

                                     Ma = T - Mg

                                      M x 3a = T - Ma    

                                    3Ma + Mg = T

                                       M = T/(3a +g)  Kg

Where 'T' is the tension of the string.

Hence, the mass of the block in Atwood's machine is, M = T/(3a +g)  Kg

3 0
3 years ago
Read 2 more answers
Other questions:
  • 5kg mass is attached to a point by a 35 meter rope. The mass isreleased and falls in a circle. If the only forces acting on the
    6·1 answer
  • Sb-28 a collision could occur when the distance decreases and bearing between two vessels does what?
    12·1 answer
  • What device is used to measure the current in a circuit
    14·1 answer
  • A student walks to school at a speed of 1.2 m/s. if the students mass is 53kg, what is the students kinetic energy
    15·1 answer
  • Which statement about solubility is true?
    14·1 answer
  • 16. An object has a mass of 13.5 kilograms. What force is required to accelerate it to a rate of 9.5 m/s2?
    8·2 answers
  • How are motors and generators different?
    14·1 answer
  • Why don't ring particles form a moon? a. They collide too violently to accrete into a moon. b. Tidal forces from moons prevent t
    14·1 answer
  • Flapping flight is very energy intensive. A wind tunnel test
    13·1 answer
  • A particle of mass 4.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a frictionless, horizo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!